How to Coordinate Countermeasures against COVID-19

S. Grundel¹ S. Heyder² T. Hotz² T. K. S. Ritschel¹ <u>P. Sauerteig</u>² K. Worthmann²

¹Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg ²Institute for Mathematics Technische Universität Ilmenau

funded by Federal Ministry of Education and Research

鍬

Federal Ministry of Education and Research Project: KONSENS (grants: 05M18SIA, 05M18EVA)

ECMI, 14 April 2021

1. Epidemiological modelling

- 1.1 Basics: S(E)IR model
- 1.2 Extensions tailored to COVID-19: SEIPHR model

1. Epidemiological modelling

- 1.1 Basics: S(E)IR model
- 1.2 Extensions tailored to COVID-19: SEIPHR model

2. Countermeasures

- 2.1 Social distancing
- 2.2 Vaccination

1. Epidemiological modelling

- 1.1 Basics: S(E)IR model
- 1.2 Extensions tailored to COVID-19: SEIPHR model

2. Countermeasures

- 2.1 Social distancing
- 2.2 Vaccination

3. Long-term vs. short-term optimization

- 3.1 Model predictive control
- 3.2 Results

1. Epidemiological modelling

- 1.1 Basics: S(E)IR model
- 1.2 Extensions tailored to COVID-19: SEIPHR model

2. Countermeasures

- 2.1 Social distancing
- 2.2 Vaccination

3. Long-term vs. short-term optimization

- 3.1 Model predictive control
- 3.2 Results
- 4. Conclusions & outlook

Basic compartmental model: SIR

3 compartments

- \bullet susceptible ${\cal S}$
- infectious I
- removed R (recovered/deceased)

Basic compartmental model: SIR

3 compartments

- \bullet susceptible ${\cal S}$
- infectious I
- \bullet removed R (recovered/deceased)

$$\frac{\mathrm{d}}{\mathrm{d}t}S(t) = -\beta S(t)I(t)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I(t) = \beta S(t)I(t)$$

Basic compartmental model: SIR

3 compartments

- \bullet susceptible ${\cal S}$
- infectious I
- removed R (recovered/deceased)

$$\frac{\mathrm{d}}{\mathrm{d}t}S(t) = -\beta S(t)I(t)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I(t) = \beta S(t)I(t) - \eta I(t)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R(t) = \eta I(t)$$

Basic compartmental model: SEIR

4 compartments

- \bullet susceptible ${\cal S}$
- ullet exposed E
- infectious I
- removed R (recovered/deceased)

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}S(t) &= -\beta S(t)I(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{E}(t) &= \beta S(t)I(t) - \gamma \boldsymbol{E}(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}I(t) &= \gamma \boldsymbol{E}(t) - \eta I(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}R(t) &= \eta I(t) \end{aligned}$$

Basic compartmental model: SEIR

Basic compartmental model: SEIR

6 Philipp Sauerteig Modelling pandemics Institute for Mathematics ECMI 2021

Model does not account for

4/16

Model does not account for

symptom severity (ICU occupancy)

Model does not account for

- symptom severity (ICU occupancy)
- demographic influences
 - · on contacts
 - symptom severity

Model does not account for

- symptom severity (ICU occupancy)
- demographic influences
 - · on contacts
 - symptom severity
- counter measures
 - social distancing/quarantine
 - vaccination
 - mass testing

Model does not account for

- symptom severity (ICU occupancy)
- demographic influences
 - · on contacts
 - symptom severity
- counter measures
 - social distancing/quarantine
 - vaccination
 - mass testing
- births and (natural) deaths
- re-infections

SEIR model

5/16

Symptom severity

transmission probabilities $\pi^S+\pi^M+\pi^A=1$

Pre-ICU compartment

quarantine

ICU compartment

 ρ : ICU admittance rate

ICU compartment

 $\sigma : \mathrm{ICU}$ discharge rate

Undetected recovery

Distinguish age groups

 $i \in \{1, 2, \dots, n_{\mathrm{g}}\}$ (in particular eta_{ij} and π_i)

Distinguish age groups

 $i \in \{1, 2, ..., n_g\}$ (in particular β_{ij} and π_i) $n_g = 3$: children, adults (most contacts), elderly (high-risk)

Extension: SEIPHR model

$$I_{i} \xrightarrow{r_{i}} R_{i} \xrightarrow{r$$

Philipp Sauerteig M Institute for Mathematics E0

5/16

Modelling pandemics ECMI 2021

The SPIRIT TEC

Extension: SEIPHR model

$$I_{i} \xrightarrow{\eta^{s}} R \xrightarrow{\rho} R$$

$$I_{i} \xrightarrow{\eta^{s}} R \xrightarrow{\rho} R \xrightarrow{\rho} R$$

$$I_{i} \xrightarrow{\eta^{s}} R \xrightarrow{\rho} R \xrightarrow{\rho} R$$

$$I_{i} \xrightarrow{\eta^{s}} R \xrightarrow{\rho} R \xrightarrow{\rho} R \xrightarrow{\rho} R$$

$$I_{i} \xrightarrow{\eta^{s}} R \xrightarrow{\rho} R \xrightarrow{\rho} R \xrightarrow{\rho} R \xrightarrow{\rho} R \xrightarrow{\rho} R \xrightarrow{\rho} R$$

$$I_{i} \xrightarrow{\eta^{s}} R \xrightarrow{\eta^{s}} R \xrightarrow{\rho} R$$

Philipp Sauerteig Me Institute for Mathematics EC

5/16

Modelling pandemics ECMI 2021

The **SPIRIT** of science

Philipp Sauerteig Me Institute for Mathematics EC

Modelling pandemics ECMI 2021 The SPIRIT TECHNISCHE UNIVERSITÄT

Philipp Sauerteig M Institute for Mathematics E

5/16

Social distancing

SEIPHR model

Countermeasures ECMI 2021

Social distancing

Contact restrictions

 $\text{control input } \delta: [0,\infty) \to [0,1]$

Simulation results over 4 years with lift of restrictions after 2 years

Simulation results over 4 years with lift of restrictions after 2 years

Simulation results over 4 years with lift of restrictions after 2 years

16 Philipp Sauerteig Countermeas Institute for Mathematics ECMI 2021

Simulation results over 4 years with lift of restrictions after 2 years

16 Philipp Sauerteig Countermea Institute for Mathematics ECMI 2021

Simulation results over 4 years with lift of restrictions after 2 years

16 Philipp Sauerteig Countermea Institute for Mathematics ECMI 2021

Simulation results over 4 years with lift of restrictions after 2 years:

2nd wave (no herd immunity)

Impact of constant restrictions

Simulation results over 4 years with lift of restrictions after 2 years:

2nd wave (no herd immunity)

Optimal social distancing

Goal: maintain hard ICU cap with as few contact restrictions as possible

Optimal social distancing

Goal: maintain hard ICU cap with as few contact restrictions as possible

Optimal control problem

$$\begin{split} \min_{\delta} \quad & \int_{0}^{t_{f}} (1 - \delta(t))^{2} \, \mathrm{d}t \\ \text{subject to} \quad & \dot{x}(t) = f(x(t), \delta(t)), \quad x(0) = x^{0} \\ & \sum_{i=1}^{n_{g}} H_{i}(t) \leq H^{\max} \quad \forall t \geq 0 \\ & \delta(t) \in [0, 1] \quad \forall t \geq 0 \end{split}$$

Optimal social distancing

Goal: maintain hard ICU cap with as few contact restrictions as possible

Optimal control problem

$$\begin{split} \min_{\delta} & \int_{0}^{t_{f}} (1 - \delta(t))^{2} dt \\ \text{subject to} & \dot{x}(t) = f(x(t), \delta(t)), \quad x(0) = x^{0} \\ & \sum_{i=1}^{n_{g}} H_{i}(t) \leq H^{\max} \quad \forall t \geq 0 \\ & \delta(t) \in [0, 1] \quad \forall t \geq 0 \\ & \delta(t) = \delta(k\Delta t), \quad t \in [k\Delta t, (k+1)\Delta t), \quad k = 0, 1, \dots \end{split}$$

with $\Delta t=1~{\rm week}$

Vaccination of susceptible people

vaccination rate $\nu:[0,\infty)\to\mathbb{R}_{\geq0}$

Countermeasures ECMI 2021

Vaccination of susceptible people

vaccination rate $\nu:[0,\infty)\to\mathbb{R}_{\geq 0}$ success rate $q\in[0,1]$

Countermeasures ECMI 2021

SEIPHR model

The SPIRIT of science TECHNISCHE UNIVERSITÄT ILMENAU

SEIPHR model

separate undetected recovery

Non-vaccinated part of population

vaccination rate $\nu_i: [0,\infty) \to \mathbb{R}_{\geq 0}$

Vaccinated part of population

vaccination rate $\nu_i: [0,\infty) \to \mathbb{R}_{\geq 0}$

Coordination of social distancing & vaccination

Goal: reduce social distancing

Optimal control problem

$$\begin{split} \min_{\delta} & \int_{0}^{t_{f}} (1 - \delta(t))^{2} \, \mathrm{d}t \\ \text{subject to} & \dot{x}(t) = f(x(t), \delta(t) \quad), \quad x(0) = x^{0} \\ & \sum_{i=1}^{n_{\mathrm{g}}} H_{i}(t) \quad \leq H^{\max} \quad \forall t \geq 0 \\ & \delta(t) \in [0, 1] \quad \forall t \geq 0 \\ & \delta(t) = \delta(k\Delta t), \quad t \in [k\Delta t, (k+1)\Delta t), \quad k = 0, 1, \ldots \end{split}$$

Coordination of social distancing & vaccination

Goal: reduce social distancing

Optimal control problem

$$\begin{split} \min_{\boldsymbol{\delta},\boldsymbol{\nu}} & \int_{0}^{t_{f}} (1-\delta(t))^{2} \,\mathrm{d}t + \kappa \,\|\boldsymbol{\nu}\|_{2}^{2} \\ \text{subject to} & \dot{x}(t) = f(x(t), \delta(t), \boldsymbol{\nu}(t)), \quad x(0) = x^{0} \\ & \sum_{i=1}^{n_{g}} H_{i}(t) + H_{i}^{V}(t) \leq H^{\max} \quad \forall t \geq 0 \\ & \delta(t) \in [0,1] \quad \forall t \geq 0 \\ & \delta(t) = \delta(k\Delta t), \quad t \in [k\Delta t, (k+1)\Delta t), \quad k = 0, 1, \dots \\ & \int_{0}^{t} \sum_{i=1}^{n_{g}} \nu_{i}(s) V_{i}(s) \,\mathrm{d}s \leq V^{\max} \cdot t \quad \forall t \geq 0 \\ & \boldsymbol{\nu}(t) = \boldsymbol{\nu}(k\Delta t), \quad t \in [k\Delta t, (k+1)\Delta t), \quad k = 0, 1, \dots \end{split}$$

TECHNISCHE UNIVERSITÄT

ILMENAU

The SPIRIT

1. Measure/Estimate current state and update parameters.

- 1. Measure/Estimate current state and update parameters.
- 2. Solve optimal control problem on small time window.

- 1. Measure/Estimate current state and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

- 1. Shift time step, measure/estimate current state, and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

- 1. Shift time step, measure/estimate current state, and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

- 1. Shift time step, measure/estimate current state, and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

- 1. Shift time step, measure/estimate current state, and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

- 1. Shift time step, measure/estimate current state, and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

- 1. Shift time step, measure/estimate current state, and update parameters.
- 2. Solve optimal control problem on small time window.
- 3. Implement first control instance.

Closed-loop simulations

Impact of prediction horizon ${\cal N}$ (in weeks) on controls

Closed-loop simulations

Impact of prediction horizon N (in weeks) on controls

270

360

Closed-loop simulations

Impact of prediction horizon ${\cal N}$ (in weeks) on controls

14/16 Philipp Sauerteig Institute for Mathematics

Long-term vs. short-term optimization ECMI 2021

Conclusions & outlook

Recap

• extension of the SEIR model to account for age-dependent symptom severity and countermeasures

Conclusions & outlook

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable

Conclusions & outlook

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy
- vaccination strategy depends on prediction horizon length

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy
- vaccination strategy depends on prediction horizon length

Further extensions and future work

minimizing fatalities

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy
- · vaccination strategy depends on prediction horizon length

- minimizing fatalities
- mass testing, age-differentiated contact restrictions

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy
- · vaccination strategy depends on prediction horizon length

- minimizing fatalities
- mass testing, age-differentiated contact restrictions
- re-infections

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy
- · vaccination strategy depends on prediction horizon length

- minimizing fatalities
- mass testing, age-differentiated contact restrictions
- re-infections
- uncertainty quantification of parameters

Recap

- extension of the SEIR model to account for age-dependent symptom severity and countermeasures
- a short lockdown in the beginning is inevitable
- vaccination helps to reduce contact restrictions and ICU occupancy
- · vaccination strategy depends on prediction horizon length

- minimizing fatalities
- mass testing, age-differentiated contact restrictions
- re-infections
- uncertainty quantification of parameters
- breakpoints/bifurcation

References

The presented results are based on

[1] S. Grundel, S. Heyder, T. Hotz, T. K. S. Ritschel, P. Sauerteig, K. Worthmann How much testing and social distancing is required to control COVID-19? Some insight based on an age-differentiated compartmental model

Submitted. (Preprint available at https://arxiv.org/abs/2011.01282)

S. Grundel, S. Heyder, T. Hotz, T. K. S. Ritschel, P. Sauerteig, K. Worthmann
How to Coordinate Vaccination and Social Distancing to Mitigate SARS-CoV-2 Outbreaks
Submitted. (Preprint available at medRxiv, DOI: 10.1101/2020.12.22.20248707)

[3] H. W. Hethcote **The mathematics of infectious diseases** SIAM Review. 42 (2000), pp. 599–653

References

The parameters are taken from

[4] Statistisches Bundesamt

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/ liste-altersgruppen.html (accessed 2020-08-29)

[5] M. Dreher, A. Kersten, J. Bickenbach, P. Balfanz, B. Hartmann, C. Cornelissen, A. Daher, R. Stöhr, M. Kleines, S. Lemmen

Charakteristik von 50 hospitalisierten COVID-19-Patienten mit und ohne ARDS

Dtsch Arztebl Int, 117 (2020), pp. 271-278.

[6] X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, G. M. Leung

Temporal dynamics in viral shedding and transmissibility of COVID-19

Nat. Med. 26(5), pp. 672-675

[7] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, J. Lessler

The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application

Ann. Med. 172(9), pp. 577-582

References

The parameters are taken from

[8] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari, S. Salmaso, G. S. Tomba, J. Wallinga, J. Heijne, M. Sadkowska-Todys, M. Rosinska, W. J. Edmunds
Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases
PLoS Medicine, 5 (2008), pp. 381–391

[9] M. Park, A. R. Cook, J. T. Lim, Y. Sun, B. L. Dickens

A systematic review of COVID-19 epidemiology based on current evidence

J. Clin. Med., 9 (2020), p. 967

[10] J. Schilling, M. Diercke, D. Altmann, W. Haas, S. Buda

Vorläufige Bewertung der Krankheitsschwere von COVID-19 in Deutschland basierend auf übermittelten Fällen gemäß Infektionsschutzgesetz

[11] R. Woelfel, V. M. Corman, W. Guggemos, M. Seilmaier, S. Zange, M. A. Mueller, D. Niemeyer, P. Vollmar, C. Rothe, M. Hoelscher, T. Bleicker, S. Bruenink, J. Schneider, R. Ehmann, K. Zwirglmaier, C. Drosten, C. Wendtner

Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster

Thank you for your attention!

Parameters

Description	Symbol		Value	
Number of age groups	$n_{\rm g}$		3	
Regularization parameter	κ		10^{-3}	
Removal rate (severe)	η^S	0.2500		
Removal rate (mild)	η^M	0.2500		
Removal rate (asymptomatic)	η^A	0.1667		
Rate of becoming infectious	γ	0.1923		
ICU admittance rate	ρ	0.0910		
ICU discharge rate	σ	0.0952		
Vaccine production limit	V^{\max}	100,000		
Success rate	q		0.9	
Age-differentiated parameters				
Age group	i	1	2	3
Age range (in years)	-	< 15	15 - 59	> 60
Relative age group size	N_i	0.1370	0.5776	0.2854
Probability of severe symptoms	π_i^S	0.0053	0.0031	0.0302
Probability of mild symptoms	$\pi_i^{\hat{M}}$	0.1211	0.2201	0.2512
Probability of no symptoms	π_i^A	0.8737	0.7768	0.7186
Transmission rate (age group 1)	β_{1i}	0.4612		
Transmission rate (age group 2)	β_{2i}	0.4819	0.6304	
Transmission rate (age group 3)	β_{3i}	0.1243	0.2944	0.1802

1/4

Closed-loop simulations II

Impact of prediction horizon ${\cal N}$ (in weeks) on states

Closed-loop simulations II

Impact of prediction horizon ${\cal N}$ (in weeks) on states

Closed-loop simulations II

Impact of prediction horizon ${\cal N}$ (in weeks) on states

Minimizing fatalities

Assumption: total number of fatalities \propto total number of people treated on ICU For given $\delta^c \in [0,1]$ solve

$$\begin{split} \min_{\nu} & H^{C}(t_{f}) + \kappa \|\nu\|_{2}^{2} \\ \text{subject to} & \dot{H}^{C}(t) = \sum_{i=1}^{n_{g}} \sigma(H_{i}(t) + H_{i}^{V}(t)), \quad H^{C}(0) = 0 \\ & \dot{x}(t) = f(x(t), \delta^{c}, \nu(t)), \quad x(0) = x^{0} \\ & \int_{0}^{t} \sum_{i=1}^{n_{g}} \nu_{i}(s) V_{i}(s) \, \mathrm{d}s \leq V^{\max} \cdot t \quad \forall t \geq 0 \\ & \nu(t) = \nu(k\Delta t), \quad t \in [k\Delta t, (k+1)\Delta t), \quad k = 0, \dots, N-1 \end{split}$$

Minimizing fatalities

- contact restrictions sufficiently strict → vaccinate group with most contacts first
- otherwise → vaccinate high-risk group first ("damage control")

Impact of V^{\max} and q

for convenience:

- light contact restrictions: $0.8 \le \delta$
- strict contact restrictions: $0.6 \leq \delta < 0.8$
- lockdown: $\delta < 0.6$

