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Coupled microgrids

We consider a network of coupled microgrids (MGs) where
each MG consists of multiple smart homes equipped with
photovoltaics and a personal battery. In a model predic-
tive control (MPC) framework, the household batteries are
used to compensate for the typical mismatch of power de-
mand and generation in a 24-hours time interval at a single
home.

When the MGs are coupled, further exchange of electricity
is possible. This exchange among microgrids is beneficial
in the German energy grid where power is typically pro-
duced in the North and demanded in the South.

The bilevel optimization problem

The control goal is to minimize the deviation from the overall average net consumption,

ζ̄κ(n) :=
1

min{N, n + 1}

n∑
j=n−min{N−1,n}

w̄κ(j), where w̄κ(j) :=
1
Iκ

Iκ∑
i=1

wi(j),

for the κ-th MG of size Iκ. Here, N denotes the prediction horizon used in the following MPC
problem:

Optimization among MGs: Consider a network of Ξ ∈ N coupled MGs, and denote by δκ,ν the
energy exchange rate from MG κ to MG ν. The following constrained optimization problem,

RΞ×Ξ×N 3 δ∗ = arg min
δ

k+N−1∑
n=k

Ξ∑
κ=1

(
Iκζ̄κ(n)−

Ξ∑
ν=1

δν,κ(n)Iνz̄ν(n)
)2

(2a)

subject to δκ,ν(n) ≥ 0,
Ξ∑
ν=1

δκ,ν(n) = 1 ∀κ, and δκ,ν(n) · δν,κ(n) = 0 for all κ 6= ν, (2b)

is solved using MatLab’s built-in sequential quadratic programming (SQP) solver.

Optimization within a single MG: For a fixed prediction horizon N, obtain a forecast for wi(n)
from the data set [4]. On this time horizon, an MPC problem for a single MG is formulated:

RI×N 3 u∗ = arg min
u

1
N

k+N−1∑
n=k

(
ζ̄(n)− 1

I

I∑
i=1

zi(n)

)2

, k = 0, 1, 2, ..., (3a)

subject to the battery dynamics in every RES written in time-discrete form,

xi(n + 1) = αixi(n) + ∆t
(
βiu+

i (n) + u−i (n)
)
, (3b)

zi(n) = wi(n) + u+
i (n) + γiu−i (n), n = k , ..., k +N−1, (3c)

and additional box constraints on the state-of-charge xi and on the charging and discharging
rates u+

i , u−i , for each i = 1, ..., I.

The optimization problem (3a)-(3c) is solved using the alternating direction method of multipliers
(ADMM) following [1].

Surrogate models in bilevel model predictive control

Main idea:

Replace the optimization problem (3a)− (3c) via a surrogate model that maps,{
x1(k ), ..., xI(k ), w̄(k ), ..., w̄(k +N−1), ζ̄(k ), ..., ζ̄(k +N−1)

}
ν

ϕν {z̄ν(k ), ..., z̄ν(k +N−1)} ,

without computing the corresponding optimal control.

ϕν

average

distribute

Figure 1: Bilevel optimization scheme with surrogate ϕν replacing MG ν.

Residential energy systems

Each microgrid in (3b)-(3c) consists of I ∈ N residential energy
systems (RES) with:

• the battery’s state-of-charge xi(k ) ≥ 0,
• the battery’s (dis-)charging rates u+

i (k ) ≥ 0 and u−i (k ) ≤ 0,
respectively,
• households with loads `i (power consumptions) and genera-

tions gi (photovoltaics) resulting in the power demand in (3c),
wi(k ) := `i(k )− gi(k ).

It is assumed that a central entity (CE) controls the batteries. The
data is provided by the Austrailian grid company Ausgrid [4].
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Figure 2: Uncontrolled aggregated power demand w̄(k ) := I−1∑I
i=1 wi(k ) for I = 50 households in Australia [4] measured

every ∆t = 0.5h. The optimization (3a)-(3c) yields a demand z̄(k ) with much less fluctuations.

Radial basis functions vs. neural networks

We replace the mapping ϕν by an approximation.

Radial basis functions: During an offline phase with M interpolation points, the approximant

RN 3 ϕRB(χ) =
M∑
i=1

αiφi(χ) + q(χ), for χ ∈ R2N+I,

with basis functions φi(χ) := φ(‖χ− χi‖) is obtained using the MatLab toolbox DACE [3].

Neural network interpolation: In a learning phase, a four-layer neural network of the form,

RN 3 ϕNN(χ) = σ
(

W [4]σ
(
W [3]σ(W [2]χ + b[2]) + b[3]) + b[4]

)
, for χ ∈ R2N+I,

with σ being the sigmoid function, and two hidden layers of 10 neurons each is trained using
MatLab’s nntraintool function. The weights W [i ] and biases b[i ] are optimized based on a least-
squares fit using M data points.

Numerical experiments:
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Figure 3: 7-days prediction of z̄(k ) for a single MG after an offline/training phase with data from the preceding two weeks.

Conclusions and future research

Objectives of the ongoing research:

• Integration of a surrogate model using radial basis functions or neural networks as a partial
replacement of ADMM within the bilevel optimization framework.
• Continuation of the work in [2] and, in particular, an extension to the entire MPC optimization

loop. Analysis of necessary updates of the surrogate model during the MPC cycle.
• Extension of the mathematical model to line losses.
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Ausgrid data set: The half-hour electricity data is for 300 homes with rooftop solar systems that
are measured by a gross meter that records the total amount of solar power generated every 30
minutes. The data has been sourced from randomly selected customers in Ausgrid’s electricity
network area that were billed on a domestic tariff and had a gross metered solar system installed.
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