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CHAPTER 1

Introduction

Motivation

Dynamic systems are used in a multitude of applications. A lot of them have an in-
creasingly complex structure, e.g., control problems like heating and cooling processes
or chemical reactions, or prediction problems like weather forecasts or biological pro-
cesses. The numerical simulation of these problems attempts to predict or control the
system behavior in order to test features or ascertain its conduct over time [Ant05;
AS01].

In this thesis, we engage in a particular aspect of PNmodeling as an example simula-
tion problem, namely, the synchronization stability of power generators. If a single generator
runs at a different frequency, the PN will fail to operate properly. A capable PN model
must therefore incorporate the dynamics between coupled power generators as part of
the network structure. Due to the advent of better computational capabilities and data
processingmethods researchers have been enabled to study large-scale features like the
network structure.

Reasons for asynchronicity might be fluctuations in power demand or the malfunc-
tion of system components [NM15a]. The implementation of smart-grids and the in-
sertion of less reliable renewable energy sources, e.g., wind and solar power, will make
the networks even more vulnerable to instability [DB12]. Due to these developments,
the overall importance of synchronization stability, and a research gap regarding the
influence of the network structure on the interconnected system dynamics have made
this an area of active research in recent years [DB12; NM15a]. [NM15a] compare three
leadingmodels in their paper on power network synchronization, two ofwhich are con-
sidered in this thesis. They are all based on a common design, representing the PN’s
structure as an interlinked 2nd-order system of Ordinary Differential Equations (ODEs)
with nonlinear dynamics. In their paper, [NM15a] derive the model-dependent param-
eters which are necessary to find a solution to the ODE systems. However, they do not
actually solve these systems. This is the first motivation of this thesis.

Faithfullymodeling such large-scale systems requires a considerable number of state
variables. The model is therefore often highly complex and its full simulation faces a
number of difficulties: Its complexity might be too large to meet storage limitations.
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CHAPTER 1. Introduction

Also, computation resultsmust be produced in reasonable time. Using large-scalemod-
els might therefore be infeasible due to limited computational speed. Furthermore, ac-
curacy suffers from the finite precision representation of numbers in computers and the
ill-conditioning of large-scale systems [Ant05; AS01]. Although these problems have
indeed been mitigated by the rise of computational capabilities in the last years, high-
complexity models of dimension up to 106 present a challenge, nonetheless.

MOR offers to overcome this dilemma by providing a reduced-order model (ROM)
of the original system. AROMmustmanage the balancing act of being of low-dimension
by downsizing the number of state variables on the one hand, while simultaneously ap-
proximating the full-order model (FOM)’s input-output-behavior with an acceptable
error and maintain significant system properties on the other hand [BG17].

While MOR theory and methods have been thoroughly studied and used in prac-
tice regarding linear systems, the development and adaptation of MOR techniques in
the nonlinear context is a work in progress. In general, nonlinear MOR presents chal-
lenges which make it more difficult than reducing linear systems. One of the problems
is the possibly costly computation, even after the reduction. Solving the nonlinear ROM
can be just as costly as the original system, rendering the MOR ineffective. Another is-
sue is the unpredictable behavior of the reduced system. A priory, it is often unclear
which (global) properties the ROM will retain from the FOM. Also, nonlinear systems
do not provide a canonical form for the ROM. This makes it hard to find an adequate
representation and construct useful algorithms [Gu11].

To remedy these challenges, several approaches have been taken. One is to linearize
the nonlinear system around an expansion point and subsequently apply linear MOR.
This represents the systemdynamicswell in the vicinity of the expansion point, but fails
as the distance grows larger. For this reason, nonlinear dynamics should be reflected
in the MOR process. The Proper Orthogonal Decomposition (POD) method in its var-
ious incarnations is a popular example which has been successfully applied to general
nonlinear systems [BG17; KW19; Pin08; RP03; Vol13]. For several years, there has also
been a focus on extending techniques originally designed for linear systems to nonlin-
ear systems with a specific structure. Especially bilinear systems have received much
attention, because a lot of biological, physical and physiological processes can be mod-
eled in the form of such systems [BBF14; BGR17; BPK71; Fla12; VG18]. More recently,
quadratic-bilinear systems have been studied with regard to MOR. Lifting a nonlinear
to a quadratic-bilinear system by adding auxiliary variables to the state vector might
not result in a unique representation, but it is an exact process, i.e., there is no added
approximation error [BBF14; BG17; Gu11; KW19].

In contrast, transforming nonlinear systems to give them a quadratic structure has
been largely disregarded in MOR research so far [BBF14; Che99]. The second motiva-
tion of this thesis is thus to lift the nonlinear PN ODE systems to quadratic form, and
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explore the application of the Balanced Truncation (BT) MOR method to these trans-
formed systems. The method is adapted to the quadratic context beforehand, based on
the work by [BG17].

The overall goal of this thesis is to examine the performance of BT applied to the
quadratic version of the PN ODE systems. To that end, we solve the systems for the
FOM and ROM and vary different reduction parameters to study their influence.

Outline

We approximate our overall goal by first exploring our twomainmotivations separately
in stand-alone chapters.

We begin Chapter 2 by introducing some concepts and terminology of power system
analysis. Building on this basis, we derive the dynamic power network models. This
includes a characterization and comparison of themodel-dependent parameters. At the
end, we have two similar nonlinear 2nd-order ODE systems of different sizes.

In Chapter 3, we present the problem setup and idea of MOR in general, and BT
in particular, in their linear and nonlinear setting. We introduce the key concepts of
reachability and observability, the respective Gramians and how they facilitate the ac-
tual process of balancing and truncating, highlighting distinct features of the quadratic
case. In addition, we establish the basics of Proper Orthogonal Decomposition (POD),
a method we use to compare the performance of quadratic BT.

While Chapters 2 and 3 are independent of each other, we link their topics in Chap-
ter 4. Since the derived PN models lack structure, we bring them into the appropriate
quadratic form in a multi-step process. We also look at the necessary assumptions for
the application of BT and take care of their satisfaction.

In Chapter 5, we consider a PN test case to evaluate the performance of quadratic BT.
We apply the method to the two PN models generated from the test case and compare
it to the POD method.

In the last chapter, Chapter 6, we conclude with summarizing and assessing the
findings.
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CHAPTER 2

Dynamic Power Network Modeling

As mentioned in the introduction, a power network can only operate if all of its gen-
erators run at the same frequency. The coupling dynamics between the generators de-
termine their state and therefore the synchronization stability of the system. In conse-
quence, a good networkmodel must properly describe the coupling dynamics of power
generators. There are various ways to do this, here we focus on two leadingmodels: the
EN model and the Synchronous Motor (SM) model.1 These models express a PN sys-
tem containing generator and load nodes as a network of coupled phase oscillators.
Therefore, we refer to the EN and SM models as types of coupled oscillator (CO) models.

The state of each PN node i is characterized by δi, its phase angle, and δ̇i, its fre-
quency [NM15a] or velocity [WT12]. With δi = δi(t) and i = 1, . . . , nco, the coupling
dynamics between oscillators is described by a system of Ordinary Differential Equa-
tions (ODEs), the so-called swing equations:

2Ji

ϕR
δ̈i +

Di

ϕR
δ̇i = Fi − ∑

j=1, j 6=i
Kij sin(δi − δj − γij), (2.1)

where the inertia J and damping D constants as well as the reference frequency ϕR

are model-independent coefficients determined by the physical structure of the system.
The parameters F, K and γ, on the other hand, dependent on the modeling of the sys-
tem’s nodes. While [NM15a] provide the derivation and a comparison of these model-
dependent quantities, they do not solve the PN ODE system (2.1). This is one of our
main objectives.

The purpose of this chapter is to retrace [NM15a]’s derivation of the parameters
F, K, and γ, which are necessary to solve the equations in the ODE system (2.1) for
each generator and load node. These two types of nodes differ in their modeling, how-
ever. While power generation can be regulated and is predictable to a certain extent,
power consumption is affected by a number of different, time-dependent factors like
the load type, size and quantity of nodes as well as human activity. The two COmodels
vary mostly in their description of load nodes, and contingent on this, in the number

1In their paper, [NM15a] also discuss a third option, the Structure-Preserving model. It represents
loads as first- and generators as second-order ODEs. Because it deviates in its derivation and structure
from the other two models, it is disregarded in this work.
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CHAPTER 2. Dynamic Power Network Modeling

of equations nco [NM15a]. We characterize the model-dependent parameters in Sec-
tion 2.3.3. First, we introduce some power systems terminology and notation in the
following Section 2.1, which we use in the context of power network modeling. Then,
we address generator node modeling in Section 2.2, before we focus on the load nodes
in Section 2.3.

2.1 Basic Concepts of Power System Analysis

A power network is a system consisting of a number of nodes and links, operating to
distribute power from generators to consumers. Power network is the generic term for
different types of power grid representations. First, there is the physical representa-
tion, i.e., the actual hardware used to engineer the network. Second, the electric circuit
representation describes the network in terms of electric components and electric power
laws. Third, the coupled oscillator representation characterizes the PN as a pure system
of coupled oscillators, where an oscillator can serve as either a generator or a load node
with mathematical identical modeling [NM15a]. An oscillator is an electronic circuit
which produces a periodic output, e.g., a sine or square wave [Sne].

A node is the generic term for a point in the network, where power is either injected
by a generator or extracted by a consumer or redistributed along branched off transmis-
sion lines. We distinguish different kinds of nodes. The simplest distinction is between
generator nodes and load nodes. Both are elements in the power network system with
the former injecting power into the network by transforming mechanical into electric
power and the latter consuming said electric power. A terminal node allows the circuit
to interconnect with its environment, and in our case specifically connects the genera-
tor to the rest of the network [NM15a; Wil10]. An internal node is a point between the
constant-magnitude voltage source and the transient reactance x′r. [NM15a].

We also operate with two types of complex voltage: When we talk about the voltage
at an internal node, we denote it by the internal voltage E. The symbol V indicates the
generic complex voltage, but also the terminal voltage at a terminal node if explicitly
mentioned.

The links are transmission lines and serve to electrically couple the nodes. Transmis-
sion lines have complex-valued impedances. Admittances are the inverse of impedances.
Due to this connection, the admittance matrix Y encodes the structure of the respec-
tive network representation [NM15a]. The construction of an admittance matrix needs
much less effort than the construction of an impedancematrix. Thematrix itself is often
sparse for large-scale PN, because each node typically has only a few links to neighbor-
ing nodes. Therefore, it is a common approach in power system analysis to use equiva-
lent admittances to express the parameters characterizing the transmission lines [GS94;
NM15a]. An admittance matrix denoted by Y0, i.e., with an additional subscripted 0,
represents the physical network structure [MMA+13; NM15a].
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2.1. Basic Concepts of Power System Analysis

Reactance x is the imaginary part of the impedance and quantifies the opposition to
a change in electric current I, the flow of electric charge [IL14]. The transient reactance
x′r is the reactance effective after the damperwinding2 currents have diminished [GS94].

We encounter different concepts of power. The active power P makes up the real
and the reactive power Q the imaginary parts of the complex power S, which adheres
to the formulae

S = VĪ = P+ iQ = |V||I| cos(φ) + i|V||I| sin(φ), (2.2)

where V denotes the voltage, Ī the complex conjugate of the electric current, φ the phase
angle, and i is the imaginary unit [GS94; IL14; NM15a]. Furthermore, Pm is the net
mechanical power input to the generator’s rotor. The electric power Pe is the requested
power by the nongenerator components of the network [NM15a].

Another context-dependent term we use is the phase angle. While δ describes the
phase angle at an internal node and always appears in conjunction with the internal
voltage magnitude |E|, φ represents the phase angle at a terminal or load node and con-
sistently occurs with the voltage magnitude |V|. Which phase angle and voltage (mag-
nitude) representation is used depends on the network component. The phase angle
matrix ϑ is calculated from the respective CO model’s admittance matrix Y. The term
γ denotes the phase angle shift in the oscillator coupling [NM15a].

Closely connected to angles are frequencies. The first derivative of a phase angle δ is
the node’s frequency δ̇. We make a distinction between the term ϕR, which is the refer-
ence frequency for the PN system and an oscillator’s inherent frequency ϕ?, which is the
equilibrium frequency of an oscillator in case there is no coupling to another oscillator
[NM15a].

The oscillators are also characterized by the inertia J and damping D coefficients.
Just like the reference frequency ϕR, the inertia and damping parameters are given by
the physical structure of the system [NM15a].

We refer to two important electric circuit laws. First, Kirchhoff’s current law says that
for any node in a circuit the sum of currents which flow towards that node is identical
to the sum of currents which flow away from that node, i.e.,

∑
j
Ij = 0, (2.3)

with I being the electric current. Second, we state Ohm’s law in the following way,

I =
E− V

ix′r
, (2.4)

where x′r is the transient reactance, and E and V stand for the internal and terminal
voltage, respectively. Using the admittance matrix Y, we can restate Ohm’s law in the

2The damper winding in a machine is responsible for the decrease of the mechanical oscillations of the
rotor approximately around synchronous speed.
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CHAPTER 2. Dynamic Power Network Modeling

entire network as a matrix-vector product,

I = YV, (2.5)

with current vector I and voltage vector V, respectively [IL14; NM15a].
We attempt to avoid confusion and use sans serif letters for those variables and pa-

rameters which primarily occur in the power systems context and serif or other special
font types for those which primarily occur in the mathematical parts of this thesis. For
example, the “P” for the active power P is not the same as the “P” for the matrix P .

In the context of power system analysis, we use bold letters whenever we mean ma-
trices or vectors, e.g.,Y is the admittance matrix whereas Y is a scalar admittance value,
and V is the voltage vector whereas V is a scalar voltage value. Whenever g, ` are used
as a super- or subscript they indicate values concerning generator or load nodes, re-
spectively. A minuscule i used as a superscript, e.g., in gi, `i, refers to generator internal
and load internal nodes, respectively, and a minuscule t used as a superscript, as in gt,
refers to terminal nodes. The superscripted star ?marks the value of a state variable for
a power flow solution, and a bar q̄ above a variable q indicates the complex conjugate.

For quick reference, you can also find a concise explanation of these terms in the
Glossary and Acronyms chapter, and a list of symbols, beginning on page xiii.

2.2 The Basic Power Network Model for Generator Nodes

The goal is to find computable expression of the model-dependent parameters F, K and
γ in the dynamic system (2.1). To that end, we want to identify the quantities neces-
sary to describe the state of a node. In this section, we focus on generator modeling and
look at two different representations of a generator to derive two important equations:
the mechanical representation leads to the so-called swing equation and the electric circuit
representation introduces the classical model. On these grounds, we discover the char-
acterizing quantities of a node’s state and how to compute them for generators at the
end of this section.

The Swing Equation The Mechanical Representation of a Generator

Mechanically, a power generator often consists of a rotor (among other parts), i.e., a
rotating mass. Its motions are affected by a mechanical and an electric torque. From
these torques, the mechanical and electric power (Pm and Pe, respectively) working on
the rotor can be calculated by multiplication with the angular velocity of the rotor, ω

(frequently, the approximation ω ≈ ϕR is assumed). Usually, both types of torque are
positive, so that the mechanical torque corresponds to the generator’s power input, and
the electric torque corresponds to the power output or to the electric power demanded
by the rest of the network. The mechanical power and torque are assumed to be con-
stant, so the electric power and torque determine the rotation’s change in velocity, i.e., if

8



2.2. The Basic Power Network Model for Generator Nodes

the rotor is accelerated (Pm > Pe), decelerated (Pm < Pe), or steady (Pm = Pe) [GS94;
NM15a]. This relative motion is expressed in the swing equation:

2J
ϕR

δ̈ +
D
ϕR

δ̇ = Pm − Pe, (2.6)

the fundamental equation of motion for a generator. The inertia constant J is the ki-
netic energy of the rotor divided by the rated power. The damping constant D is the
combined damping coefficient which - simply put - merges several quantities which
decrease or impede the rotor’s oscillations. The angle δ is the rotor angle relative to a
frame rotating at the reference frequency ϕR [NM15a]. The first and second deriva-
tive of δ thus correspond to the velocity (or frequency) and acceleration of the rotor,
respectively [GS94]. The systems (2.1) and (2.6) represent a dynamic system for δ.

The swing equation constitutes the linchpin of our further examination. The left
hand side (LHS) of the swing equation (2.6) is already in the form of the LHS of the
ODE system (2.1). The constants J, D and ϕR are determined by the underlying physical
power network. The right hand side (RHS), in contrast, depends on time and themodel
representation which is employed. The classical model in the next subsection furnishes
us with alternative expressions for Pm and Pe.

The Classical Model The Electric Circuit Representation of a Generator

Under realistic conditions, both the mechanical and electric power show nonlinear be-
havior. The classical model incorporates these dynamics and is still relatively simple by
making a few very important assumptions concerning the electric circuit3:

1. Each generator node is represented as a voltage source.

2. Each voltage source is linked to a terminal by a transient reactance x′r > 0.

3. Each voltage source has a constant voltage magnitude |E|.

4. Each load node is represented as an impedance.

5. The mechanical power input to each rotor is constant.

6. The phase angle of the voltage source coincides with the mechanical rotor angle.

Constant voltage and mechanical power are sustainable for short time periods. These
assumptions limit the complexity and computational costs of the PN system while at
the same time depicting the network dynamics authentically [GS94; NM15a]. They are
essential to find and compute themodel-dependent parameters F, K, and γ, and remain
valid throughout this thesis.

3In some descriptions of the classical model, damping D is neglected. In [NM15a] however, it is recog-
nized as a parameter which can have conceivable effects on the steady-state stability and can be adjusted
to optimize the stability.

9



CHAPTER 2. Dynamic Power Network Modeling

An additional assumption in stability studies is the initial synchronization of all gen-
erators at the reference frequency ϕR in a steady state. This is legitimate since the system
frequency is rigorously supervised and regulated to approximate ϕR in real life under
steady-state conditions. This frequency management is done by balancing the mechan-
ical power input to the generators. We then have δ̈ = δ̇ = 0 and Pm = Pe = P?

g, with P?
g

being the active power which a generator is transferring through its terminal. With Pm

thus remaining constant, the swing equation and the classical model can be applied in
stability analysis.

Under steady and unsteady conditions, the power-angle equation

Pe =
|E?V|
x′r

sin(δ − φ) (2.7)

describes the electric power output. Here, we differentiate between the complex volt-
ages Vi = |Vi| exp(iφi) at a terminal, and Ei = |E?

i | exp(iδi) at an internal node i, which
are both time-dependent. Substituting the new expressions for themechanical and elec-
tric power in equation (2.6), we get

2J
ϕR

δ̈ +
D
ϕR

δ̇ = P?
g︸︷︷︸

Pm

− |E?V|
x′r

sin(δ − φ)︸ ︷︷ ︸
Pe

, (2.8)

which effectually models the dynamic behavior of a generator. The classical model in-
corporates the nonlinear dynamics by expressing the RHS of (2.6) with a sine term
(among others) which we also find on the RHS of the ODE system (2.1).

As already mentioned, the constants J, D and x′r are known as distinct physical and
electrical features of a generator. The parameters P?

g and |E?|, however, are contingent
on the power flow distribution in a steady-state network. In order to calculate the in-
ternal voltage magnitude, we take the complex power equation, (2.2), P?

g + iQ?
g = VĪ,

substitute I using Ohm’s law (2.4), ix′rI = E− V, and properties of the complex conju-
gate:

|E?|2 =

(
P?

gx
′
r

|V?|

)2

+

(
|V?|+

Q?
gx

′
r

|V?|

)2

, (2.9)

where |V?| is the steady-state terminal voltage and Q?
g is the reactive power which the

generator infuses to the terminal. The values of P?
g,Q?

g and |V?| yield the state of the ter-
minal node. In consequence, equations (2.8) and (2.9) establish a connection between
the terminal and internal nodes as well as the dynamic behavior of the system’s gener-
ator [NM15a]. From these equations, we can also deduce the characterizing quantities
of the dynamic state of a node i: the powers Pi and Qi, the voltage magnitude |Vi| or
|Ei|, respectively, and the phase angle φi or δi, respectively.

If the classical model is applied in stability analysis, P?
g and |V?| are usually given

as input data. Because |V| is connected to |E| by the transient reactance x′r, we already

10



2.2. The Basic Power Network Model for Generator Nodes

have two of the necessary four defining quantities with respect to generators. In the
next subsection, we turn to the question of how to obtain the steady-state values for Q?

g

as well as δ? and φ?. The steady-state phase angles can serve as initial conditions for
(2.8), and in consequence as input data for system (2.1) [NM15a].

Getting the Necessary Input The Power Flow Equations

In a network with alternating current, power is a complex number with real (active)
and complex (reactive) parts. There are severalmeans to uniquely determine the steady
state of an operating PN, the objective of power system analysis. One way is to inspect
the power flow distribution through the links of the physical network. Another way
is to focus on the nodes of the network. Employing Kirchhoff’s laws (2.3), and the
restatement of Ohm’s law (2.5), the power flow state can be characterized by the power
flow equations:

(active power) Pi =
n

∑
j=1

|ViVjY0ij| sin(φi − φj − γ0ij), i = 1 . . . n, (2.10)

(reactive power) Qi = −
n

∑
j=1

|ViVjY0ij| cos(φi − φj − γ0ij), i = 1 . . . n, (2.11)

where n is the number of nodes, and γ0ij = ϑ0ij − π
2 (more on ϑ below). With (2.10)

and (2.11), the steady state of a power flow is likewise dictated by four parameters for
each node i: Pi and Qi, whose sum Pi + iQi is the complex power injection at node i,
and complex voltage Vi = |Vi| exp(iφi) with magnitude |Vi| and phase angle φi. The
(complex-valued) admittance Y0ij is the most interesting quantity in these equations
with regard to the two CO models we focus on. It plays a decisive role in each of the
model-dependent parameters. The construction of the admittance matrix is where they
differ most. In general, the admittances of the physical network are assembled in the
admittance matrix

Y0 = (Y0ij) =

Y
gg
0 Y

g`
0

Y
`g
0 Y``

0

 , (2.12)

where the first ng rows (columns) are separated from the last n` rows (columns). The
number of generator nodes is denoted by ng and the number of load nodes is denoted
by n`. The entries are represented in polar form Y0ij = |Y0ij| exp(iϑ0ij), where ϑ is
the matrix containing the phase angles of the respective admittances. An off-diagonal
element Y0ij is the negative of the admittance between nodes i and j 6= i. A diagonal
element Y0ii is the sum of all admittances connected to node i. As noted in Section 2.1,
two nodes in a PN are connected by a transmission line. It has an impedance, which
is represented by an equivalent admittance, the inverse of impedance. The structure of
the physical network is thus inscribed in Y0.
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CHAPTER 2. Dynamic Power Network Modeling

To solve the power flow system (2.10) and (2.11) of 2n equations, two real param-
eters per node are necessary. There are common assumptions made in power system
analysis concerning generator and load nodes on which quantities are given. In case i

is a generator node, the active power is provided as Pi = P?
g,i, and the complex voltage

magnitude as |Vi| = |V?
i | (or as |Ei| = |E?

i |, if i is a generator internal node). Both val-
ues are assumed to be constant. It is common practice to define one generator node as a
reference node. For this type of node, the phase angle φi is set to zero, and the value of
the active power Pi is left unspecified. This is done to account for the unknown power
losses in the system, e.g., in the transmission lines.

In case i is a load node, the active power is given asPi = −P?
`,i and the reactive power

as Qi = −Q?
`,i. Supplied with these parameter values and in addition with the admit-

tance matrix Y0, the power flow equations (2.10) and (2.11) can be solved numerically,
e.g., by adequate software tools.

To recap, the dynamic state of a network is identified by the four time-dependent
parameters Pi,Qi, |Vi| and φi, for each node i. Hence, we need four equations per node
to describe its dynamics. Table 2.1 shows the node type and the respective known and
unknown parameter values.

Table 2.1: Known and Unknown Parameter Values

type of node known unknown

load P, Q |V|, φ

reference generator φ, |V| P, Q

generator (terminal) P, |V| Q, φ

generator (internal) P, |E| Q, δ

The power flow equations (2.10) and (2.11) are valid at each point in time for time-
dependent variables, but they only suffice to contribute two equations. This is accurate
for both generator and load nodes. Regarding generators, we can replace one of the two
given parameters, i.e., the constant power injection and the constant voltagemagnitude,
with a differential equation, namely the adapted swing equation (2.8) in conjunction
with (2.9). Thus, we move from the steady-state power flow equations to a dynamic
model, and account for the time-variation of a node’s state. The last parameter is fixed
by the commonly-made assumption that the reactive powerQg is identical to its steady-
state value Q?

g for short time periods. It can therefore be determined by the power flow
equations. We justify this by assuming that the generator’s reactive power injection into
its terminal is invariant for short time intervals. In this manner, the four state variables4

4The internal voltage E = |E| exp(iδ) is linked to the terminal voltage V = |V| exp(iφ) by the transient
reactance x′r via Ohm’s law (2.4).
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2.3. The Basic Power Network Model for Load Nodes

Pg,Qg, |E| and δ can be formulated as functions of time, provided we have an initial
condition and know the state variables for all times t at the other nodes [NM15a].

2.3 The Basic Power Network Model for Load Nodes

Finding two additional equations per load node is more difficult, due to the more un-
predictable character of loads asmentioned at the beginning of this chapter. We present
two approaches addressing the challenge of load modeling in this thesis. But before we
focus on their individual concepts, we first make ourselves familiar with the so-called
Kron reduction, a power engineering technique. Both the EN and SM model use it to
remove specific “unnecessary” nodes.

Kron Reduction

If there is no external load or generator connected to a network node, its current injection
I is always zero. Nodes of this kind can be removed by Kron reduction. The method is
similar to Gaussian elimination, but deletes a redundant row and column completely
rather than just making it all zero.

First, we cast Kirchhoff’s current law (2.3) into the form of the following nodal-
admittance-equations, which is an (n × n) system,

Y11 · · · Y1(i−1) Y1i Y1(i+1) · · · Y1n

... · · · · · · . . . · · · · · ·
...

Y(i−1)1 · · · Y(i−1)(i−1) Y(i−1)i Y(i−1)(i+1) · · · Y(i−1)n

Yi1 · · · · · · Yii · · · · · · Yin

Y(i+1)1 · · · Y(i+1)(i−1) Y(i+1)i Y(i+1)(i+1) · · · Y(i+1)n

... · · · · · · . . . · · · · · ·
...

Yn1 · · · Yn(i−1) Yni Yn(i+1) · · · Ynn





V1

...

Vi−1

Vi

Vi+1

...

Vn



=



I1
...

Ii−1

0

Ii+1

...

In



. (2.13)

Node i has zero current injection and is thus eliminated resulting in the (n − 1 × n − 1)

system,

Y(new)
11 · · · Y(new)

1(i−1) Y(new)
1(i+1) · · · Y(new)

1n
... · · · · · · · · · · · ·

...

Y(new)
(i−1)1 · · · Y(new)

(i−1)(i−1) Y(new)
(i−1)(i+1) · · · Y(new)

(i−1)n

Y(new)
(i+1)1 · · · Y(new)

(i+1)(i−1) Y(new)
(i+1)(i+1) · · · Y(new)

(i+1)n
... · · · · · · · · · · · ·

...

Y(new)
n1 · · · Y(new)

n(i−1) Yn(i+1) · · · Ynn





V1

...

Vi−1

Vi+1

...

Vn


=



I1
...

Ii−1

Ii+1

...

In


. (2.14)
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CHAPTER 2. Dynamic Power Network Modeling

The voltage and admittance information of the nodes with zero current injection does
not get lost during the elimination procedure. In fact, it is incorporated in the remaining
nodes. The values for Y(new)

jk are obtained by Algorithm 2.1 [BV00; GS94].

Algorithm 2.1: Kron Reduction (cf. [BV00])
Input: nodal-admittance-system as in (2.13) where node i has zero current

injection.
Output: reduced admittance-nodal-system as in (2.14).

1 Express Vi in terms of the other voltages:

Vi = −
n

∑
k=1, k 6=i

Yik

Yii
Vk.

2 Substitute Vi in all equations for Ij, for all j 6= i:

Ij =
n

∑
k=1, k 6=i

YjkVk + Yji

(
−

n

∑
k=1, k 6=i

Yik

Yii
Vk

)

=
n

∑
k=1, k 6=i

(
Yjk −

YjiYik

Yii︸ ︷︷ ︸
Y
(new)
jk

)
Vk.

3 Arrange the terms such that the matrix and vectors in (2.14) are generated and
replace the admittance term with

Y(new)
jk = Yjk −

YjiYik

Yii
j, k = 1, . . . , n j, k 6= i (2.15)

Algorithm 2.1 has some noteworthy features [BV00; DB13; GS94]:

• It can be repeated iteratively for all Ii = 0.

• It can destroy sparsity.

• The reduced admittance matrix can be computed directly with equation (2.15).

• Kron reduction and node elimination of a system are interchangeable notions.

• The connectivity of the network is preserved.

• Two nodes j and k are connected in the Kron reduced network if and only if there
was a path of intermediate nodes between j and k in the original network and all
these intermediate nodes have been eliminated.

We will refer to this procedure in the subsequent sections on the individual model’s
conception of load nodes.

14



2.3. The Basic Power Network Model for Load Nodes

Preliminaries on the Construction of the Coupled Oscillator Representation

The EN and SM models are indeed very similar. They are mathematically equivalent
and take the same substantial steps in load node construction. The assumptions for
the classical model on page 9 hold for both models; assumptions 1. − 5. are especially
important to keep in mind during the construction. We outline the general procedure
here and expand on the details in the subsequent sections on the EN and SM models.

Given a PN system in its physical representation, they first transform the network
into its electric circuit representation. During this step, they substitute the load nodes
with some other type of network component. The EN and SM models differ most in
their choice of the electric circuit (EC) component into which each load node should be
recast.

In the process, they expand the network by adding generator internal nodes. The
load nodes in the created electric circuit representation of the network are reconstructed
as constant impedances to the ground (or equivalent admittances). This implies that
these nodes have zero current injection and they are removed via Kron reduction. After
the elimination, only the internal nodes are left in the coupled oscillator representation
of the network. They all have equivalent mathematical modeling, and depict the gen-
erator dynamics as coupled phase oscillators.

2.3.1 Effective Network Model

Assuming constant power demand, the ENmodel redefines the load nodes in the phys-
ical network as constant impedances to the ground, i.e., nodes with zero current injec-
tion. All nodes except generator internal nodes are then eliminated through Kron re-
duction. This can be interpreted as treating the load nodes as transmission lines (which
also have impedance), so that the generators are directly linked. The idea is motivated
by the observation that the dynamic behavior between two generator nodes nonlinearly
depends on the terminal voltage phase in the adapted swing equation (2.8). The equa-
tion is merely the mathematical expression of the physical path of transmission lines
connecting the generators. The EN model reconstructs this path in such a manner that
the coupling between generators can be expressed in a single term depending solely on
the generators’ state variables [MMA+13; NM15a].

Figure 2.1 depicts an example modeling process for two generator (G1, G2) and one
load node (L) in the network representation. References to the figure are in parentheses
during the following description of the modeling.

Recall that ng is the number of generator terminal nodes and n` is the number of
load nodes with n = ng + n` in the physical representation. We start by first enlarging
the network. In the electric circuit representation, we add one generator internal node
(Gi

1, Gi
2) for each generator terminal node (Gt

1, Gt
2) existing in the physical network. This

new kind of node is defined as a point between the internal transient reactance (ix′r)
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LG1 G2

Network representation

P?
`,1 P?

`,2

P?
`,3

Electric Circuit representation

L

i2g

Y`,3 = const.,

I = 0

Gt
1ix′r,1Gi

1

VS i2g

E1 = const.,

I 6= 0 Yg,1 = const.,

I = 0

Gt
2 ix′r,2 Gi

2

VSi2g

E2 = const.,

I 6= 0Yg,2 = const.,

I = 0

Coupled Oscillator representation

O1

F1

O2

F2
KEN

12 , γEN
12

G: generator node P: power
L: load node ix′r: transient reactance
O: oscillator node E: internal voltage
VS: voltage source Y: equivalent admittance
i2g: impedance to the ground I: current injection

Figure 2.1: Power Network Modeling Process of the EN Model

and the constant voltage source (VS with |E| = const.). The total number of nodes
in the electric circuit representation network has now increased to nec = 2ng + n`. By
reordering, the indices i = 1, . . . , ng account for the newly created generator internal
nodes, i = ng + 1, . . . , 2ng for the generator terminal nodes, and i = 2ng + 1, . . . , nec for
the load nodes.

We now return to the admittance matrix Y0 in (2.12) of the physical network,

Y0 = (Y0ij) =

Y
gg
0 Y

g`
0

Y
`g
0 Y``

0

 ,

and reconstruct it to fit the electric circuit representation.
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2.3. The Basic Power Network Model for Load Nodes

In steady state, a load node (L) (and generator terminal nodes (Gt
1, Gt

2) are treated
in the same way) uses active and reactive powers P?

`,i and Q?
`,i. The node is redefined as

a constant impedance to the ground (i2g) and has equivalent admittance

Y`,i =
P?
`,i − iQ?

`,i

|V?
i |2

.

Remember, that constant admittance implies zero current injection (I = 0). A node’s
voltage magnitude |V?

i |2 can be calculated from the power flow equations (2.10) and
(2.11) with P?

`,i and Q?
`,i as input data. Assuming constant power demand, the constant

admittance Y`,i can thus be determined. We add these values to the respective diagonal
elements of the matrix blocks Ygg

0 and Y``
0 to get Ỹgg

0 and Ỹ
``
0 .

Another admittance matrix we need is the (ng × ng) diagonal matrix YEN
d with the

generator transient reactances (ix′d,1)
−1, . . . , (ix′d,ng

)−1 as its diagonal elements. The pur-
pose of YEN

d is to link the new generator internal (Gi
1, Gi

2) to the preexisting generator
terminal nodes (Gt

1, Gt
2).

The admittance matrix YEC′
= YEC′

ij of size (2ng + n` × 2ng + n`) is composed of
these different kinds of admittancematrices. It comprises the transient reactances along
with the equivalent impedances for the generator terminal and load nodes. Therefore,
it represents the network structure of the electric circuit representation:

YEC′
=


YEN

d −YEN
d 0

−YEN
d Ỹ

gg
0 +YEN

d Y
g`
0

0 Y
`g
0 Ỹ

``
0

 , (2.16)

where 0 is the matrix of all zeros of appropriate size.
The last major step in the construction of the EN admittance matrix is to use Kron

reduction to eliminate all nodes with zero current injection. Since we just redefined the
generator terminal and load nodes as constant impedances to the ground with equiva-
lent constant admittances, all nodes (Gt

1, Gt
2 and L) have zero current injection except the

generator internal nodes (Gi
1, Gi

2). LetV
gi

,Vg andV` be the voltage vectors correspond-
ing to the generator internal nodes, generator terminal and load nodes, respectively, and
concatenate them to form the voltage vectorV. We assume the voltage vector is unique.
Similar to the nodal-admittance-equations in (2.13), we write Kirchhoff’s current law
(2.3) as 

YEN
d −YEN

d 0

−YEN
d Ỹ

gg
0 +YEN

d Y
g`
0

0 Y
`g
0 Ỹ

``
0



Vgi

Vg

V`

 =


Igi

0

0

 . (2.17)

After applying Kron reduction and thereby deleting all nodes relating to Vg,V`, the
system is transformed to YVg = Igi . Employing the Kron reduction formula (2.15), the
Effective Network admittance matrix YEN = (YEN

ij ) is defined by

YEN = Y′(I + (YEN
d )−1Y′)−1) with Y′ = Ỹ

gg
0 − Ỹ

g`
0 (Ỹ

``
0 )−1Ỹ

`g
0 , (2.18)
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where I is the (ng × ng) identity matrix. The existence of matrix (I+ (YEN
d )−1Y′)−1 and

Ỹ
``
0 hinges on sufficiently small transient reactances x′d,i. The assumption of uniqueness

of the voltage vectors guarantees the existence of the inverse of (Ỹ``
0 )−1. The inverse of

YEN
d always exists.
The network is nowmodeled as a system of nco coupled oscillators (O1, O2), and the

admittance matrix YEN embodies the structure of the coupled oscillator representation
of the network. It assists us to find a different form of Pe in the adapted swing equation
(2.8). We substitute Y0 for YEN, |E?

i | for |Vi|, δi for ϕi in that equation, and obtain an
expression which is derived from a power balance equation synonymous to equation
(2.10):

Pe,i =
ng

∑
j=1

|E?
i E

?
j Y

EN
ij | cos(δj − δi + ϑEN

ij ), (2.19)

whereYEN
ij = |YEN

ij | exp(iϑEN
ij ). We thus have found a replacement for the coupling term

|E?V|
x′r

in (2.8). Using equation (2.19), the swing equation (2.6) for each generator can be
rewritten such that we have an expression of the same pattern as equation (2.1). Hence,
the EN model is defined by nco = ng ODEs of the form

2Ji

ϕR
δ̈i +

Di

ϕR
δ̇i = FEN

i −
ng

∑
j=1, j 6=i

KEN
ij sin(δi − δj − γEN

ij ), i = 1, . . . , nco, (2.20)

with
FEN

i = P?
g,i − |E?

i |2Re(YEN
ii ), KEN

ij = |E?
i E

?
j Y

EN
ij |,

γEN
ij = ϑEN

ij − π

2
, YEN

ij = |YEN
ij | exp(iϑEN

ij ),
(2.21)

and ϑEN
ij being the phase angle of the EN model’s admittance matrix elements. The

internal voltage magnitude |E?
i | is assumed to be constant. Given a steady-state power

flow, it is computed with equation (2.9) for each generator [NM15a].

2.3.2 Synchronous Motor Model

The trick of the SynchronousMotor model is to redefine the load nodes as synchronous
motors5. A motor is essentially a generator with reverse power flow, i.e., it translates
electric into mechanical power. For this reason, a load node can be conveniently mod-
eled by the swing equation for generators (2.6) with Pm < 0 and Pe < 0. Figure 2.2
illustrates the modeling process, again for two generator (G1, G2) and one load node
(L), to which we refer to in parentheses in the modeling description.

Similar to the EN model, to construct the electric circuit representation, therefore
define ng additional internal nodes (Gi

1, Gi
2) for the generators. Because each load node

is represented by a synchronousmotor, i.e., a generatorwith negativemechanical power
Pm, we also add n` internal nodes for the loads (Li). The generator terminal (Gt

1, Gt
2) and

load nodes (L) in the physical representation are reconstructed as constant impedances
5In the literature, you often encounter the term “synchronous machines”.
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LG1 G2

Network representation

P?
`,1 P?

`,2

P?
`,3

Electric Circuit representation

ix′r,3Li L

VS i2g

E3 = const.,

I 6= 0 Y`,3 = const.,

I = 0

Gt
1ix′r,1Gi

1

VS i2g

E1 = const.,

I 6= 0 Yg,1 = const.,

I = 0

Gt
2 ix′r,2 Gi

2

VSi2g

E2 = const.,

I 6= 0Yg,2 = const.,

I = 0

Coupled Oscillator representation

O3

F3

O1

F1

O2

F2

K13, γ13 K23, γ23

K12, γ12

G: generator node P: power
L: load node ix′r: transient reactance
O: oscillator node E: internal voltage
VS: voltage source Y: equivalent admittance
i2g: impedance to the ground I: current injection

Figure 2.2: Power Network Modeling Process of the SMModel

to the ground (i2g) with zero current injection. They are oncemore equatedwith trans-
mission lines connecting the new generator and load internal nodes. In consequence,
the mathematical formulation of the SM model is identical to the EN model and the
derivation of the SM model’s admittance matrix is analogous. The SM model’s electric
circuit representation of the network has a total number of nec = 2ng + 2n` = 2n nodes.

Again, we change the node order such that indices i = 1, . . . , ng indicate the gener-
ator internal nodes, i = ng + 1, . . . , n the load internal nodes, i = n + 1, . . . , n + ng gen-
erator terminal nodes, and i = n + ng + 1, . . . , 2n load nodes. The diagonal admittance
matrix YSM

d is now an (n × n) matrix with the generator and load transient reactances
(ix′d,1)

−1, . . . , (ix′d,n)
−1 on its diagonal. Parallel to the EN model, YSM

d is responsible for
linking the added generator internal and load internal nodes to the generator terminal

19



CHAPTER 2. Dynamic Power Network Modeling

and load nodes in the underlying physical network.
The admittancematrixYEC′′

= YEC′′
ij of size (2n× 2n) encodes the network structure

in the SM model’s electric circuit representation. Just like YEC′ above, it includes the
transient reactances of the internal and the equivalent impedances of the terminal and
load nodes:

YEC′′
=

[
YSM

d −YSM
d

−YSM
d Y0 +YSM

d

]
. (2.22)

Once more, we perform Kron reduction to delete all generator terminal and load
nodes (Gt

1, Gt
2 and L) since these have zero current injection. To this end, let Vgi+`i be

the voltage vector corresponding to the internal nodes and Vg+` be the voltage vector
corresponding to the generator terminal and load nodes. Kirchhoff’s current law (2.3)
is then written as [

YSM
d −YSM

d

−YSM
d Y0 +YSM

d

] [
Vgi+`i

Vg+`

]
=

[
Igi+`i

0

]
. (2.23)

Kron reduction cuts the system size to (n × n). We get the Synchronous Motor admit-
tance matrix YSM = (YSM

ij ) by using the Kron reduction formula (2.15):

YSM = YSM
d (I −YSM

d (Y0 +YSM
d )−1), (2.24)

where I is the (n × n) identity matrix. The structure of the coupled oscillator represen-
tation is now inscribed in the entries of YSM, and all nodes are expressed as coupled
oscillators (O1, O2, O3). By again replacing Y0 for YSM, |E?

i | for |Vi|, δi for ϕi in the
adapted swing equation (2.9), we obtain a new statement for the active power identical
to (2.19). With nco = n, the SM model is given by the ODE system

2Ji

ϕR
δ̈i +

Di

ϕR
δ̇i = FSM

i −
n

∑
j=1, j 6=i

KSM
ij sin(δi − δj − γSM

ij ), i = 1, . . . , n, (2.25)

with

FSM
i = P?

g,i − |E?
i |2Re(YSM

ii ), i = 1, . . . , ng for generators,

FSM
i = −P?

g,i − |E?
i |2Re(YSM

ii ), i = ng + 1, . . . , n for loads/motors,

KSM
ij = |E?

i E
?
j YSM

ij |, γSM
ij = ϑSM

ij − π

2
, YSM

ij = |YSM
ij | exp(iϑSM

ij ),

(2.26)

and ϑSM
ij being the phase angle of the SM model’s admittance matrix elements. The

constant internal voltage magnitude |E?
i | is likewise computed with equation (2.9) for

each generator [NM15a].

2.3.3 Model-Dependent Parameters: Characterization and Comparison

From the derivation above, we see that the CO model equations are ODE systems of
swings equations with modeled parameters for the RHSs. The objective of this section
is to characterize the model-dependent parameters F, K and γ.
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2.3. The Basic Power Network Model for Load Nodes

Let the superscript mod ∈ {EN, SM} indicate model-specific parameters. Because
bothmodels recast the PN nodes in the form of coupled oscillators withmathematically
identical structure, they both adhere to the following pattern in their definition of the
model-dependent parameters:

Fmod
i = ±P?

g/`,i − |E?
i |2Re(Ymod

ii ), Kmod
ij = |E?

i E
?
j Y

mod
ij |,

γmod
ij = ϑmod

ij − π

2
, Ymod

ij = |Ymod
ij | exp(jϑmod

ij ),
(2.27)

where i, j = 1, . . . , nco, with nco = ng for the EN model and nco = ng + n` = n for the
SM model.

Remark 2.1. The two CO models can vary considerably in size depending on the ng-n`-
ratio. Assuming that every PN system has at least one load node, the SMmodel is obvi-
ously always larger than the EN model. Since a PN system usually has a lot more load
nodes than generator nodes, we may expect that both building and reducing the SM
model, as well as solving the ODE system requires more time and memory compared
to the EN model.

The inherent frequency – the equilibrium frequency of an oscillator in the absence
of the coupling term K in (2.1) – is calculated as ϕ? = ϕR(1 +

F
D ). So, the term model-

dependent term F determines an oscillator’s inherent frequency alongwith the network-
dependent constant term D. The coupling term K depicts the strength of the dynamic
coupling between two oscillators and is always nonnegative [NM15a]. It holds, Kij 6= 0

if oscillators i and j are connected, and Kij = 0 otherwise. So, it is comparable to an ad-
jacency matrix [FNP08]. The term Kij sin(δi − δj − γij) represents the power flow along
transmission lines [DCB13]. The parameter γ in turn, is the phase shift involved in the
oscillator coupling and encodes the coupling structure [NM15a].

On the one hand, each oscillator i is inclined to align with its preferred inherent
frequency ϕ?. On the other hand, the coupling term Kij sin(δi − δj − γij) drives an oscil-
lator to synchronize with its neighbors. The struggle for supremacy of these two forces
determines the dynamic behavior of the PN ODE system (2.1). An equilibrium of the
PN network is reached in (2.1), if all oscillators rotate with the same inherent frequency
ϕ?

i and all angles δi are aligned. Then we have

δ̇1 = δ̇2 = · · · = δ̇ng ,

i.e., the power network is synchronized.
Different inherent frequencies of the coupled oscillators disturb this equilibrium.

The coupling strength Kij also affects these dynamics. If the oscillators are strongly
coupled and rotate with approximately equal inherent frequencies, they are more in-
clined to synchronize. In the reverse case, i.e., the oscillators’ inherent frequencies are
heavily different and the network is weakly coupled, synchronization is much harder
to occur [DCB13].
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Based on their research, [NM15a] have implemented an open-sourceMATLAB tool-
box called pg_sync_models [NM15b] which computes the model-dependent parameters
F, K and γ in the ODE system of swing equations (2.1). It uses another package, MAT-
POWER [ZM16], to solve the power flow equations and includes a routine to estimate
the parameters J, D and x′r which are not always provided in a power system dataset.
By using these toolboxes, we have all the necessary quantities to solve system (2.1).

While the two COmodels share the same computational roots, i.e., the swing equa-
tion, the classical model, and the power flow equations, it is still interesting to look at
both models. In their paper, [NM15a] demonstrate that despite their application to the
same network case, their respective CO model representations can feature utterly dif-
ferent parameters F, K, γ. Likewise, applying one model on different datasets exposes
dissimilar characteristics of the model parameters. In conclusion, the valid application
of these models depends heavily on the intended goal, further assumptions, and power
system selection [NM15a].
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CHAPTER 3

Model Order Reduction Methods for Dynamic
Systems

We begin by introducing the overall problem-setup and idea of Model Order Reduc-
tion, before turning our attention to the specifics of the Balanced Truncation and Proper
Orthogonal Decomposition. First, we unfold the theory for linear systems, which has
been well studied andMORmethods have been fully fleshed out for this case (see, e.g.,
[Ant05]). Because of the difficulties arising from nonlinear systems, the MOR theory is
not as evolved for this type of systems, although important nonlinear-specific concepts
have been developed, especially since the ’90s (see, e.g., [GM96; Sch93]). So, while
primarily looking at the linear case, we point out the relevant differences particular to
nonlinear systems.

Throughout this thesis, we only consider continuous (i.e., time t is a real number),
time-invariant systems of finite dimension.

3.1 Model Order Reduction

Problem Setup

Consider a dynamic system of (explicit) 1st-order differential equations with the state
space X ⊆ Rn, the input space U ⊆ Rm and the output/observation space Y ⊆ Rp. It
is described by state equations of the form

ẋ(t) = f (x(t)) + g(x(t), u(t)),

y(t) = h(x(t), u(t)), (3.1)

x(0) = x0,

with variables

x(t) ∈ X state vector,

u(t) ∈ U input or excitation vector,

y(t) ∈ Y output or observation vector.

The (linear or nonlinear) functions f : Rn → Rn and g : Rn × Rm → Rn model the dy-
namic behavior of the system, whereas h : Rn × Rm → Rp specifies the transformation
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CHAPTER 3. Model Order Reduction Methods for Dynamic Systems

from the state and input to the output [Ant05; BG17]. In case, (3.1) is a linear system,
it can be represented using matrices in the following way:

Definition 3.1 (State Space Description of (Linear) Dynamic System, [Ant05]). The
state space description of a linear system is composed ofmatrices1 A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rp×n, such that

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), (3.2)

x(0) = x0,

with x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp, and a given initial value x0. We concisely
denote this system by

Σ =

(
A B

C

)
∈ R(n+p)×(n+m). (3.3)

Corresponding to the respective functions, A and B are the state dynamics and input
matrices, respectively, and C is the output matrix.

Definition 3.2 (Complexity, Order, [Ant05; AS01]). The complexity, or order of a system
(3.1) is defined as the number n of state variables included, i.e., the size of the state
vector x = (x1, · · · , xn)∗, or the number of state equations, respectively.

Using the matrix exponential defined by

eMt = In +
t
1!

M +
t2

2!
M2 + · · ·+ tk

k!
Mk + · · · , (3.4)

for a matrix M ∈ Rn×n and a scalar t ∈ R, the solution of the state equations in system
(3.2) at time t > t0 is

ψ(u; x0; t) = eA(t−t0)x0 +
∫ t

t0

eAt−τBu(τ)dτ, (3.5)

provided an input u, and an initial condition x(0) = x0 at time t0. The output is accord-
ingly,

y(t) = Cψ(u; x(t0); t) = Cψ(0; x(t0); t) + Cψ(u; 0; t) (3.6)

accordingly, [Ant05].

Idea of Model Order Reduction

In the introduction in Chapter 1, we mentioned some of the challenges posed by large-
scale system, e.g., constraints on computation time, storage and accuracy. To circumvent

1The output equations can have an additional term D : Rm → Rp mapping u, but since this map is
irrelevant in this thesis, we omit it.
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these impairments, a simplified model is needed which can be used instead of the orig-
inal system for simulation or control purposes.

The objective of Model Order Reduction is to find a dynamic system of lower or-
der nρ � n that can be used instead of the FOM. This reduced-order model can be
represented in form of a system of equations relating to system (3.1),

˙̂x(t) = f̂ (x̂(t)) + ĝ(x̂(t), u(t)),

ŷ(t) = ĥ(x̂(t), u(t)), (3.7)

x̂(0) = x̂0,

with

f̂ : Rnρ → Rnρ , ĝ : Rnρ × Rm → Rnρ , ĥ : Rnρ × Rm → Rp,

or, corresponding to (3.2), a system of matrices,

˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), (3.8)

x̂(0) = x̂0,

with matrices Â ∈ Rnρ×nρ , B̂ ∈ Rnρ×m and Ĉ ∈ Rp×nρ .

Definition 3.3 ((Linear) reduced-order model, [Ant05]). We denote the reduced-order
model of the full-order model Σ in (3.3) by

Σ̂ =

(
Â B̂

Ĉ

)
∈ R(nρ+p)×(nρ+m), (3.9)

with reduction order nρ � n.

Figure 3.1 illustrates the MOR process for linear systems.

A

C

B Â

Ĉ

B̂

Figure 3.1: Graphical Depiction of MOR Process for Linear Systems

The ROM should approximate the original FOM (3.3) such that it meets certain re-
quirements, for example:2: (1) The foremost is, of course, that the ROM is of lower
complexity, i.e., nρ � n. (2) The error between the full- and the reduced-order system
is small. The existence of a global error bound is also desirable. (3) System properties

2A more elaborate list can be found in [Ant05; AS01].
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like stability are maintained. (4) The computation itself is stable and efficient [Ant05;
AS01; BG17].

The first two requirements considered together imply that the MORmethod should
provide some decision-making tool or measure to determine which states to discard
and which ones to preserve, i.e., which states are either too “important” to cut and/or
which states are “not important enough” to keep in order to achieve a small reduction
error.

Essential Methods

Themost fundamental technique needed inMOR is the state transformation. The inten-
tion is to bring the system into a new form such that the MOR method can take advan-
tage of certain structural properties. We require a nonsingular matrix T transforming
the state variable

x̂ = Tx, (3.10)

and applied to the system matrices accordingly, system (3.2) is transformed into

˙̂x = TAT−1︸ ︷︷ ︸
Â

x̂ + TB︸︷︷︸
B̂

u,

ŷ = CT−1︸ ︷︷ ︸
Ĉ

x̂.

So, by means of T, we can transform system Σ in (3.3) into an equivalent system Σ̂,
(3.9), i.e., (

T
Ip

)(
A B

C

)
︸ ︷︷ ︸

Σ

=

(
Â B̂

Ĉ

)
︸ ︷︷ ︸

Σ̂

(
T

Im.

)
(3.11)

In this thesis, we test the Balanced Truncation (BT) method to reduce the COmodel
systems. It is a Singular Value Decomposition (SVD)-basedMOR approach. Because of
the SVD’s importance, we briefly revisit it here alongwith the Cholesky decomposition,
another significant decomposition used in BT.

Theorem 3.4 (Singular Value Decomposition, [Ant05]). Let M ∈ Cn×k with n 6 k and
σi =

√
λi > 0, where λi the i-th eigenvalue (EV) of M∗M. Then, there exists a decomposition

M = VΣW∗, (3.12)

where V = (v1 · · · vn) ∈ Cn×n and W = (w1 · · ·wk) ∈ Ck×k are unitary matrices and
Σ = diag(σ1, . . . , σn) is a diagonal matrix with the singular values (SVs) σi arranged in de-
creasing order σ1 > σ2 > · · · > σn > 0. The vi’s and wj’s are the left and right singular vectors
of M, respectively.
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Theorem3.5 (CholeskyDecomposition, [Hig96]). Let M ∈ Rn×n be a symmetric positive
definite matrix. Then, there exists a unique decomposition

M = R∗R, (3.13)

where the Cholesky factor R ∈ Rn×n is an upper triangular matrix with positive elements on
its diagonal.

3.2 Balanced Truncation for (Linear) Dynamic Models

In this section, we introduce the concepts of reachability and observability. They give us a
measure to determinewhich states are important in a system. Balanced Truncation uses
these concepts as the aforementioned “cut-or-keep” decision-making tool. A number of
states in a dynamic systemmight be difficult to reachwhile the states which are difficult
to observemight be different ones. This difficulty ismeasured by the degree of reachability
and degree of observability, respectively. BT balances the system first such that the states
to truncate are simultaneously hard to reach and observe.

Let X ⊆ Rn be the state space throughout this section.

The Reachability Concept

In this subsection, we only consider systems of the form Σ =

(
A B

)
, since the output

matrix C is of no consequence regarding reachability. The concept estimates howmuch
the system’s state x can be influenced by the input u.

Definition 3.6 (Reachability Terminology, [Ant05]).

• A point x̄ ∈ X is reachable from the zero state, if there is an input function ū(t) of
finite energy and a time T̄ < ∞, such that

x̄ = ψ(ū; 0; T̄)

is fulfilled.

• All the reachable states in Σ make up the reachable subspace Xreach ⊆ X. The system
Σ is (completely) reachable if Xreach = X.

• The reachability matrix of Σ is defined as

R(A, B) =
[

B AB A2B · · · An−1B · · ·
]

. (3.14)

Due to the Cayley-Hamilton theorem, the first n terms of the reachability matrix are
sufficient to determine its rank and span. This allows us to use the finite reachability
matrix Rn(A, B) =

[
B AB A2B · · · An−1B

]
in computational settings3.

3For properties of the reachability matrix and its connection to the reachability Gramian, see Ap-
pendix A.1.
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We now introduce the first stepping-stone towards measuring the reachability of a
state.

Definition 3.7 (Finite Reachability Gramian, [Ant05]). For a time t < ∞, the finite
reachability Gramian is given by

P(t) =
∫ t

0
eAτBB∗eA∗τdτ. (3.15)

From the definition follows that the finite reachability Gramian is positive semidef-
inite, i.e., P(t) = P∗(t) > 0.

Theorem3.8 (ReachabilityConditions, [Ant05]). The following statements are equivalent:

1. The system Σ containing (A, B) is reachable.

2. The reachability matrix R(A, B) has full rank.

3. The reachability Gramian P(t) is positive definite for some t > 0.

The concept of controllability is equivalent to the reachability concept, which in away
reverses the latter: Controllability considers how an input u can direct the system from
a given nonzero state to the zero state rather thanmoving the system from the zero state
to a specific state.

Definition 3.9 (Controllable state; controllable subspace, [Ant05]).

• A(nonzero) point x̄ ∈ X is controllable to the zero state, if there is an input function
ū(t) with finite energy and a time T̄ < ∞, such that

ψ(ū; x̄; T̄) = 0

is fulfilled.

• All the reachable states in Σ make up the controllable subspace Xcontr ⊆ X. If
Xcontr = X, the system Σ is (completely) controllable.

The equivalence of the reachability and controllability concepts is established by

Theorem 3.10 (Reachability-Controllability Equivalence, [Ant05]). Xreach = Xcontr.

The Observability Concept

In order to steer and evaluate the dynamics of a system, knowledge of the state vari-
ables is necessary. As these data frequently cannot be measured, the state observation
problem is concerned with the inference of the state variables x(T) from outputs (or
observations) y(τ), where τ ∈ [T, T + t].

Without loss of generality, the observation problem can be simplified by assuming
that T = 0. We can also assume, that u(·) = 0. As we know the input u, for t > 0 the last
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term in (3.6) is known, too. Thus, the task at hand is to find x(0), given Cψ(0, x(0), t)

for t > 0. These assumptions hold throughout this subsection and render input matrix

B redundant. Hence, we consider the system Σ =

(
A

C

)
.

Definition 3.11 (Observability Terminology, [Ant05]).

• A point x̄ ∈ X is unobservable if y(t) = Cψ(0, x̄, t) = 0 for all t > 0.

• All the unobservable states in Σ make up the unobservable subspace Xunobs ⊆ X.

• If Xunobs = 0, the system Σ is (completely) observable.

• The observability matrix of Σ is defined as

O(C, A) =
[
C∗ A∗C∗ (A∗)2C∗ · · · (A∗)n−1C∗ · · ·

]∗
. (3.16)

Once more, the Cayley-Hamilton theorem permits us to work with the finite ob-
servability matrix On(C, A, ) =

[
C∗ A∗C∗ (A∗)2C∗ · · · (A∗)n−1C∗]∗ in computational

contexts4.
We presently define the second stepping-stone towards computing the observability

of a system.

Definition 3.12 (Finite Observability Gramian, [Ant05]). For a time t < ∞, the finite
observability Gramian is given by

Q(t) =
∫ t

0
eA∗τC∗CeAτdτ. (3.17)

Theorem 3.13 (Observability Conditions, [Ant05]). The following statements are equiv-
alent:

1. The system Σ containing (C, A) is observable.

2. The observability matrix O(C, A) has full rank.

3. The observability Gramian Q(t) is positive definite for some t > 0.

Infinite Gramians and Energy Functionals

In this subsection, we derive an important feature of the Gramians which provides the
wanted state importance measure. We first introduce one more necessary assumption.
To this purpose, we assume u ≡ 0 and consider the autonomous system

ẋ(t) = Ax(t). (3.18)
4For properties of the observabilitymatrix and its link to the observability Gramian, see Appendix A.1.

29



CHAPTER 3. Model Order Reduction Methods for Dynamic Systems

Definition 3.14 (Stable Matrix, [Ant05; Zha13]). A matrix is stable if its eigenvalues λ

are in the left half of the complex plane, or put differently, Re(λ) < 0 for all eigenvalues
λ.

A matrix is called semi-stable if the real part of every eigenvalue λ is nonpositive, i.e.,
Re(λ) 6 0 for all eigenvalues λ.

Theorem 3.15 relates a stable linear dynamics matrix A to an (asymptotically) stable
system Σ.

Theorem 3.15 (Matrix-based System Stability, [Ant05]). The system ẋ(t) = Ax(t) is

(1) stable if and only if for all eigenvalues λ of A it holds Re(λ) 6 0 and the multiplicity of
those eigenvalues with Re(λ) = 0 is one.

(2) asymptotically stable if and only if the matrix A is stable.

Remark 3.16. We equate stability with asymptotic stability from now on [Ant05]. For a
more in-depth treatment of stability, we refer to Appendix A.2.

We now consider a stable system Σ =

(
A B

C

)
. LetLn

p(I) be the space of Lebesgue-

integrable functions equipped with a p-norm over some finite or infinite interval I , i.e.,

Ln
p(I) = { f : I → Rn, || f ||p < ∞}, 1 6 p 6 ∞. (3.19)

The 2-norm of a function f defines its energy

|| f ||2 = 〈 f , f 〉 =
∫ T

0
f ∗(t) f (t)dt.

Our objective is to compute the energy functionals of the system.

Definition 3.17 (Controllability andObservability Energy Functionals, [Sch93]). The
controllability energy functional of a system is defined as

Lc(x0) = min
u∈L2(−∞,0)
x(−∞)=0, x(0)=0

=
1
2

∫ 0

−∞
||u(t)||2dt. (3.20)

It is the minimum amount of energy needed to steer the system from the zero state at
time t = −∞ to x(0) = x0.

Likewise, the observability energy functional of a system is defined as

Lo(x0) =
1
2

∫ ∞

0
||y(t)||2dt, (3.21)

where x(0) = x0 and u(t) = 0 for 0 6 t < ∞. It is the amount of energy generated by
the initial state x0 with no input present.
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Comparing these functionals with Theorems 3.9 and 3.11, it is apparent, they give
us a measure of the degree of controllability (or equivalently the degree of reachability) and
degree of observability, respectively [Ant05]. Intuitively, we would like to minimize the
energy it takes to control the system andmaximize the produced energywe can observe
from the system.

We can compute time-dependent values for the energy functionalswith finiteGrami-
ans, see Proposition A.12 in Appendix A.3. However, it is desirable to have a time-
independent measure. Since we assume a stable system with a stable matrix A, the
integrals of both types of finite Gramians are bound as we let t → ∞. Thus, we can
define infinite versions of the reachability Gramian 3.7 and observability Gramian 3.12.
That is for t = ∞, we have the following definition.

Definition 3.18 (Infinite Gramians, [Ant05]).

P =
∫ ∞

0
eAτBB∗eA∗τdτ, (3.22)

Q =
∫ ∞

0
eA∗τC∗CeAτdτ. (3.23)

To compute them, we solve the so-called Lyapunov equations.

Theorem 3.19 (Lyapunov Equations, [Ant05]). The infinite Gramians are the unique so-
lutions to the Lyapunov equations

AP + PA∗ + BB∗ = 0, (3.24)

A∗Q+QA + C∗C = 0. (3.25)

Remark 3.20. In Appendix A.2, we present a nice connection between Lyapunov equa-
tions and another type of stability based on a special kind of scalar functions, the so-
called Lyapunov functions.

If we additionally assume (complete) reachability and observability of the system,
the Gramians are positive definite and by the properties of the integral, we have

P > P(t), and Q > Q(t), for all t.

Keeping this observation in mind, we can compute optimized values of the energy
functionals with the infinite Gramians as the following Theorem 3.21 states.

Theorem 3.21 (Computation of Energy Functionals, [Ant05; Sch93]). Let the infinite
Gramians P and Q be the unique solutions to the Lyapunov equations in Theorem 3.19. Then,

Lc(x0) =
1
2

x∗0P−1x0, (3.26)

which is the minimal control energy needed to arrive at the state x0, and

Lo(x0) =
1
2

x∗0Qx0, (3.27)

which is the maximal observation energy generated by the initial state x0.
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Nowweknowhow to optimize the energy functionals. Ifwe therefore look at the im-
portance of state variables from an energetic point of view, this theorem helps us to dis-
tinguish the significant from the insignificant states. In terms of energy, the stateswhich
require the most energy to control lie in the span of eigenvectors of P relating to small
eigenvalues. Likewise, the states which cause the least observation energy lie in the
eigenvector span of Q relating to small eigenvalues. The size of these sub-eigenspaces
provide the degree of controllability/reachability and degree of observability [Ant05].

Balancing and Truncating

These degrees guide the decision which states to cut and which to keep. However, as
thesemeasures are basis-dependent, it might occur that states which are hard to control
are not hard to observe or the other way around. Balanced Truncation makes sure to
only omit those states for which the difficulty to control and observe coincide.

Mathematically, this amounts to express P and Q in a common basis. It requires a
suitable similarity transformation which warrants that

P̂ = TPT∗, Q̂ = T−∗QT−1 ⇒ P̂Q̂ = T(PQ)T−1. (3.28)

The transformationmatrix T is then called a balancing transformation and its columns
are the eigenvectors of the product PQ. It follows that the product of the Gramians of
equivalent systems have the same eigenvalues. This in turn guarantees that the states
which are difficult to control are identical to the states which are difficult to observe.

Definition 3.22 (Balanced System, [Ant05]). The stable, reachable and observable sys-
tem Σ is balanced if P = Q. If in addition

P = Q = Σ = diag (σ1, . . . , σn) ,

the system is principal-axis balanced.

The values on the diagonal are special system invariants, called the Hankel singular
values [Ant05]:

Lemma 3.23 (Hankel Singular Values, [Ant05]). TheHankel singular values of the bal-
anced system Σ are equal to the positive square roots of the eigenvalues (EVs) of the product of
the infinite Gramians, that is

σi(Σ) =
√

λi(PQ), i = 1, . . . , n, (3.29)

with σi > σi+1.

Evidently, in a balanced system large eigenvalues of the product PQ correspond
to large Hankel singular values. The decay rate of these SVs indicates an appropriate
reduction order nρ.
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There are several ways to determine a balancing transformation. One approach uses
the eigenvalue decomposition. But since this requires the computation of two matrix
inverses, we present the square root method here.

First, we decompose both P and Q into their respective Cholesky factors,

P = R∗R and Q = S∗S . (3.30)

The SVs of the product of the Cholesky factors R and S∗ are precisely the Hankel
SVs. So, we compute the SVD

RS∗ = VΣW∗, (3.31)

and get the orthogonal matrices V and W. The balancing matrix is then

T = Σ−1/2W∗S with T−1 = R∗VΣ−1/2. (3.32)

We apply T to system (3.3) as in (3.11) and receive the balanced, equivalent system(
TAT−1 TB

CT−1

)
. (3.33)

Now for the reduction, we partition V =
(

Vnρ Vn−nρ

)
and W =

(
Wnρ Wn−nρ

)
,

Vnρ , Wnρ ∈ Rn×nρ , where nρ is the number of the nρ largest SVs of Σ, such that

RS∗ = VΣW∗ ≈ Vnρ ΣnρW∗
nρ

. (3.34)

The nρ leading columns of V span a low-dimensional space in which the state vector
x(t) can be approximated by another vector x̂(t). We set the transformation matrices

W∗ = Tnρ = Σ− 1
2

nρ
W∗

nρ
S , V = T−1

nρ
= R∗Vnρ Σ− 1

2
nρ

, (3.35)

where Σnρ is the upper left nρ × nρ-block of Σ. The state vector can then be approxi-
mated by x ≈ V x̂ with x̂(t) ∈ Rnρ , which relates the ROM to the FOM, and we obtain
the ROM

Σ̂ =

(
W∗AV W∗B

CV

)
(3.36)

of reduction order nρ � n.

3.3 Balanced Truncation for (Quadratic) Dynamic Models

A lot of concepts and ideas of MOR and BT remain valid under nonlinear conditions,
still there are some important peculiarities. Because we lack a holistic nonlinear MOR
theory, we focus on those which arise in the context of quadratic systems.
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Structural Adaptations to Problem Setup and Balancing Measurement

The problem setup for nonlinear MOR is almost the same, except that at least one of the
functions in system (3.1) and one of themaps in system (3.3) is explicitly nonlinear. The
systemmight also have additional functions and corresponding matrix representations
which model the nonlinear behavior of the system.

In the following considerations, we assume that the state of the system is the zero
state at time t = 0, i.e., the initial condition is x(0) = x0 = 0. If x(0) = x0 6= 0 we
can define suitable state variables x̃ = x − x0 and transform the system accordingly, see
section 4.3 for the treatment of our specific case, or [BBF14] for linear time-invariant
systems.

We base our MOR efforts on nonlinear systems with a quadratic5 structure6 Their
state space description is analogous to Definition 3.1:

Definition 3.24 (State Space Description of Quadratic Dynamic System). Given ma-
trices A ∈ Rn×n, H ∈ Rn×n2

, B ∈ Rn×m and C ∈ Rp×n, the state space description of a
quadratic dynamic system is

ẋ(t) = Ax(t) + H
(
x(t)⊗ x(t)

)
+ Bu(t),

y(t) = Cx(t),

x(0) = 0,

(3.37)

with x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. The compact notation is

Σ =

(
A H B

C

)
∈ R(n+p)×(n+n2+m). (3.38)

Matrices A and H model the linear and quadratic state dynamics, respectively, B is the
input matrix, and C is the output matrix.

Remark 3.25. The symbol ⊗ depicts the Kronecker product. For the definition and prop-
erties, we refer to Appendix B.1

The objective of the quadratic MOR is to find a reduced dynamic system complexity
nρ � n (compare to (3.8)),

˙̂x(t) = Âx̂(t) + Ĥ
(
x̂(t)⊗ x̂(t)

)
+ B̂u(t),

ŷ(t) = Ĉx̂(t),

x̂(0) = 0,

(3.39)

with

Â ∈ Rnρ×nρ , Ĥ ∈ Rnρ×n2
ρ , B̂ ∈ Rnρ×m, Ĉ ∈ Rp×nρ ,

5This involves the use of the Kronecker product. For its definition and properties, see Appendix B.1.
6Our BT approach is based on the paper [BG17]. The authors actually deal with quadratic-bilinear

systems, but since the bilinear term is irrelevant in our case, we omit it.
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which approximates the quadratic system (3.37) such that it satisfies the aforemen-
tioned requirements on Page 26. Figure 3.2 illustrates the MOR process for quadratic
systems.

A H

C

B Â Ĥ

Ĉ

B̂

Figure 3.2: Graphical Depiction of MOR Process for Quadratic Systems

Definition 3.26 (Quadratic Reduced-Order Model). We denote the quadratic reduced-
order model of system (3.38) by

Σ̂ =

(
Â Ĥ B̂

Ĉ

)
∈ R(nρ+p)×(nρ+n2

ρ+m) (3.40)

with reduction order nρ � n (compare to Definition 3.3).

The basic idea and procedure of Balanced Truncation are identical to the linear case.
But just like the problem setup, the key BT-specific concepts need to be modified to the
quadratic case. We begin this adaptation process with the energy functionals which
provide the measures of where and how much to truncate the system.

The definition of the controllability energy functional in Definition 3.17 holds for the
nonlinear case. However, the definition given for the observability energy functional
assumes that the system is zero-state observable, i.e., if both input and output variables
are zero for t > 0, the state variable must remain at zero for all t > 0. This assumption
is too strong for nonlinear systems. In [BG17], the authors overcome this restriction by
requiring the input to be L2- and L∞-bounded.

Definition 3.27 (Relaxed Observability Energy Functional, [BG17]). The observabil-
ity energy functional of a nonlinear system is defined as

Lo(x0) = max
u∈K(κ,β)

x(0)=x0, x(∞)=0

=
1
2

∫ ∞

0
||y(t)||2dt, (3.41)

where K(κ,β) = {u ∈ Lm
2 [0, ∞) : ||u||L2 6 κ, ||u||L∞ 6 β}.

This definition evaluates the state variables from a state-to-output perspective. A
state component would be deemed irrelevant if it has the least share in the observability
energy for every conceivable input within the L2- and L∞-bounded ball [BG17; GM96].

In the linear context, the controllability and observability energy functionals can be
stated in terms of a plain quadratic formula, as seen in Theorem 3.21. For nonlinear
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systems, this is not possible, not even with the limitation to quadratic systems. Nev-
ertheless, [BG17] contribute bounds on the energy functionals. The goal of the next
subsections of this thesis is to derive and compute the truncated quadratic Gramians
which provide the following bounds:

Theorem 3.28 (Energy Functional Bounds with Truncated Gramians, [BG17]7). Con-
sider system (3.37) with a stable matrix A. Assume the system to be locally reachable and
observable. Let the truncated reachability Gramian PT > 0 and the observability Gramian
QT > 0 satisfy their respective Lyapunov equation (3.48) and (3.54). Then,

(1) there is a neighborhood Kc of 0, such that for x ∈ Kc

Lc(x) >
1
2

x∗P−1
T x. (3.42)

(2) Likewise, there is a neighborhood Ko of 0, such that for x ∈ Ko

Lo(x) 6
1
2

x∗QT x. (3.43)

In their paper, [BG17] give an example which shows that close to the origin the
energy functionals based on the truncated Gramians do not only present a good ap-
proximate to the actual energy functionals computed by solving the partial differential
equations (see TheoremA.14 ), but indeed outperform the energy functionals based on
the infinite Gramians.

Reachability Gramians

To find an expression for the reachability Gramian, [BG17] make use of the Volterra se-
ries, a well-established method for bilinear systems (see, e.g., [BGR17; BPK71; Rug81]).
They treat the quadratic-bilinear case similarly to this type of nonlinear systems.

The Volterra series restates a nonlinear system in terms of cascaded linear (sub-)
systems by a functional series expansion8 [BPK71; VG18]. There are various ways to
construct a Volterra Series representation of a system (see, e.g., [Rug81; VG18]). We
merely illustrate the first few steps in the derivation of the series for quadratic systems
to give an idea of the procedure and stick to the straightforward approach taken by
[BG17] for simplicity.

We start by defining the notation

xτ1,...,τ`(t) := x(t − τ1 − · · · − τ`), uτ1,...,τ`(t) := u(t − τ1 − · · · − τ`),

7See Theorem A.15 for the version with infinite Gramians.
8In particular, a Volterra series expansion is often used to formulate an input-output representation of a

nonlinear system in order to linearize the systemor to derive transfer functions [BPK71; Fla12; Isi85; Rug81;
VG18]. As a we do not seek a different output representation, we focus exclusively on the restatement of
the state equation, just like [BG17].
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and integrate both sides of the state equation of system (3.37) in the state variables with
respect to time. Thus, we get

x(t) =
∫ t

0
eAτ1 Buτ1(t)dτ1 +

∫ t

0
eAτ1 H

(
xτ1(t)⊗ xτ1(t)

)
dτ1. (3.44)

As we need the value of xτ1(t), we proceed analogously to (3.44), and obtain the same
integral solution, but with adapted integration limits and differential, i.e.,

xτ1(t) =
∫ t−τ1

0
eAτ2 Buτ1,τ2(t)dτ2 +

∫ t−τ1

0
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
dτ2.

So, xτ1(t) computes part of the time interval of x(t). Now, we substitute xτ1(t) in (3.44),
but switch the differential of the second quadratic term from τ2 to τ3. Since the inte-
gration limit remains unchanged this is of no consequence for the computation of the
integral. With this trick, we create a pseudo-linear equation and acquire

x(t) =
∫ t

0
eAτ1 Buτ1(t)dτ1

+
∫ t

0
eAτ1 H

( [∫ t−τ1

0
eAτ2 Buτ1,τ2(t)dτ2 +

∫ t−τ1

0
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
dτ2

]
⊗
[∫ t−τ1

0
eAτ3 Buτ1,τ3(t)dτ3 +

∫ t−τ1

0
eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)
dτ3

] )
dτ1

(/)
=
∫ t

0
eAτ1 Buτ1(t)dτ1

+
∫ t

0
eAτ1 H

( [∫ t−τ1

0
eAτ2 Buτ1,τ2(t)dτ2 ⊗

∫ t−τ1

0
eAτ2 Buτ1,τ3(t)dτ3

]
+

[∫ t−τ1

0
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
dτ2 ⊗

∫ t−τ1

0
eAτ3 Buτ1,τ3(t)dτ3

]
+

[∫ t−τ1

0
eAτ2 Buτ1,τ2(t)dτ2 ⊗

∫ t−τ1

0
eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)
dτ3

]
+

[∫ t−τ1

0
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
dτ2 ⊗

∫ t−τ1

0
eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)
dτ3

] )
dτ1,

wherewe used the distributivity property of the Kronecker product in (/) (3rd property
in Theorem B.2). Pulling out the integral and switching the order of integration using
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Fubini’s theorem, this equals

x(t) =
∫ t

0
eAτ1 Buτ1(t)dτ1

+
∫ t

0

∫ t−τ1

0

∫ t−τ1

0
eAτ1 H

( [
eAτ2 Buτ1,τ2(t)⊗ eAτ3 Buτ1,τ3(t)

]
+
[
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
⊗ eAτ3 Buτ1,τ3(t)

]
+
[
eAτ2 Buτ1,τ2(t)⊗ eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)]
+
[
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
⊗ eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)] )
dτ1dτ2dτ3

(O)
=

∫ t

0
eAτ1 Buτ1(t)dτ1

+
∫ t

0

∫ t−τ1

0

∫ t−τ1

0
eAτ1 H

( [
(eAτ2 B ⊗ eAτ3 B)(uτ1,τ2(t)⊗ uτ1,τ3(t))

]
+
[
eAτ2 Buτ1,τ2(t)⊗ eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)]
+
[
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
⊗ eAτ3 Buτ1,τ3(t)

]
+
[
eAτ2 H

(
xτ1,τ2(t)⊗ xτ1,τ2(t)

)
⊗ eAτ3 H

(
xτ1,τ3(t)⊗ xτ1,τ3(t)

)] )
dτ1dτ2dτ3,

where we used the mixed product property in (O) (5th property in Theorem B.2). Con-
tinuing to substitute for the state variables generates the Volterra series for the quadratic
system. From this, the so-called Volterra kernels can be identified.

Definition 3.29 (Reachability Mapping, Volterra Kernels, [BG17]). We define the
reachability mapping P̄ = [P̄1, P̄2, P̄3, . . .]9 with the P̄i’s being the Volterra kernels deduced
from the Volterra series:

P̄1(t1) = eAt1 B,

P̄3(t1, t2, t3) = eAt3
[
H[P̄1(t1)⊗ P̄1(t2)]

]
= eAt3

[
H[(eAt1 B)⊗ (eAt2 B)]

]
P̄5(t1, . . . , t5) = eAt5

[
H[P̄1(t1)⊗ P̄3(t2, t3, t4), P̄3(t1, t2, t3)⊗ P̄1(t4)]

]
,

= eAt5
[
H[(eAt1 B)⊗ (eAt4 [H(eAt2 B ⊗ eAt3 B)]),

(eAt3 [H(eAt1 B ⊗ eAt2 B)])⊗ (eAt4 B)
]
,...

P̄i(t1, . . . , ti) = eAti
[
H[P̄1(t1)⊗ P̄i−2(t2, . . . , ti−1),

P̄2(t1, t2)⊗ P̄i−3(t3, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2)⊗ P̄1(ti−1)]
]
, for all i > 3, i ≡ 1 mod 2,

and P̄i(t1, . . . , ti) = 0 for all i ≡ 0 mod 2.

9To avoid confusion concerning the indices used in [BG17], we adhere to the numbering given in that
paper. So, all the even numbered kernels are 0 here, because the bilinear term is N = 0.

38



3.3. Balanced Truncation for (Quadratic) Dynamic Models

Definition 3.30 (Reachability Gramian, [BG17]). The reachability Gramian P is defined
by means of P̄ as

P =
∞

∑
i=1

Pi with Pi =
∫ ∞

0
· · ·

∫ ∞

0
P̄i(t1, . . . , ti)P̄∗

i (t1, . . . , ti)dt1 · · ·dti. (3.45)

The summands of the reachability Gramian satisfy a sequence of a special type of
quadratic Lyapunov equations. Consider the first summand in Definition 3.30,

P1 =
∫ ∞

0
P̄1P̄∗

1 dt1 =
∫ ∞

0
eAt1 BB∗eA∗t1dt1.

This is just the linear infinite Gramian of Definition 3.18. As stated in Theorem 3.19,
under the assumption that A is stable, it is the solution of the Lyapunov equation

AP1 + P1A∗ + BB∗ = 0. (3.46)

For P3, we have

P3 =
∫ ∞

0

∫ ∞

0

∫ ∞

0
P̄3P̄∗

3 dt1dt2dt3

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eAt3

[
H[P̄1(t1)⊗ P̄1(t2)][P̄1(t1)⊗ P̄1(t2)]

]∗H∗eA∗t3dt1dt2dt3

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eAt3

[
H[(eAt1 B)⊗ (eAt2 B)][(eAt1 B)⊗ (eAt2 B)]∗H∗]eA∗t3dt1dt2dt3

(.)
=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eAt3

[
H[(eAt1 B)⊗ (eAt2 B)][(eAt1 B)∗ ⊗ (eAt2 B)∗]H∗]eA∗t3dt1dt2dt3

(O)
=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eAt3

[
H[(eAt1 B)(eAt1 B)∗]⊗ [(eAt2 B)(eAt2 B)∗]H∗]eA∗t3dt1dt2dt3

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eAt3

[
H[(eAt1 BB∗eA∗t1)]⊗ [(eAt2 BB∗eA∗t2)]H∗]eA∗t3dt1dt2dt3

=
∫ ∞

0
eAt3

[
H[
∫ ∞

0
(eAt1 BB∗eA∗t1)dt1]︸ ︷︷ ︸

P1

⊗ [
∫ ∞

0
(eAt2 BB∗eA∗t2)dt2]︸ ︷︷ ︸

P1

H∗]eA∗t3dt3

=
∫ ∞

0
eAt3

[
H(P1 ⊗ P1)H∗]eA∗t3dt3,

whereweused the distributivity of (conjugate) transposition in (.) and themixedprod-
uct property of the Kronecker product in (O) (the 4th and 5th property in Theorem B.2).
So, the term P3 can be expressed as a function of the preceding term P1 and is the solu-
tion to the Lyapunov equation [BG17],

AP3 + P3A∗ + H(P1 ⊗ P1)H∗ = 0. (3.47)

Carrying on in the same manner with the succeeding Pi’s, we see that each of these
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multiple integrals can be broken down into parts consisting of its predecessors, i.e.,

Pi =
∫ ∞

0
· · ·

∫ ∞

0
P̄i P̄∗

i dt1 · · ·dti

=
∫ ∞

0
eAti

[
H
[( ∫ ∞

0
P̄1(t1)P̄∗

1 (t1)dt1

)
⊗
( ∫ ∞

0
· · ·

∫ ∞

0
P̄i−2(t2, . . . , ti−1)P̄∗

i−2(t2, . . . , ti−1)dt2 · · ·dti−1

)
+ · · ·+

( ∫ ∞

0
· · ·

∫ ∞

0
P̄i−2(t1, . . . , ti−2)P̄∗

i−2(t1, . . . , ti−2)dt1 · · ·dti−2

)
⊗
( ∫ ∞

0
P̄1(ti−1)P̄∗

1 (ti−1)dti−1

)]
H∗
]

eA∗tidti

and solve the Lyapunov equation

APi + Pi A∗ + H(P1 ⊗ Pi−2 + P3 ⊗ Pi−3 + · · ·+ Pi−3 ⊗ P3 + Pi−2 ⊗ P1)H∗ = 0. (3.48)

When we sum up equations (3.46), (3.47) and (3.48), we have

A
∞

∑
i=1

Pi︸ ︷︷ ︸
P

+
∞

∑
i=1

Pi︸ ︷︷ ︸
P

A∗ + H
( ∞

∑
i=1

Pi︸ ︷︷ ︸
P

⊗
∞

∑
i=1

Pi︸ ︷︷ ︸
P

)
H∗ + BB∗ = 0, (3.49)

which implies the following theorem,

Theorem 3.31 (Reachability Gramian Lyapunov Equation, [BG17]). Consider system
(3.37) and let A be stable. Assuming that the reachability Gramian P as defined in 3.30 exists,
it is the solution of the generalized quadratic Lyapunov equation

AP + PA∗ + H(P ⊗P)H∗ + BB∗ = 0. (3.50)

Observability Gramians

The derivation and results for the reachability Gramian are parallel to those which can
be obtained for the observability Gramian. We simply state the definitions and conclu-
sions for this Gramian here.

Definition 3.32 (ObservabilityMapping, Volterra Kernels, [BG17]). Let the P̄i’s be as
in Definition 3.29, and let H(2) be the mode-2 unfolding of a tensor constructed from
H10. Furthermore, let the Q̄i’s be the Volterra kernels deduced from the Volterra series,

10For details, see Appendix B.2.
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3.3. Balanced Truncation for (Quadratic) Dynamic Models

and let Q̄ = [Q̄1, Q̄2, Q̄3, . . .]11 be the observability mapping made up of these kernels:

Q̄1(t1) = eA∗t1 C∗,

Q̄3(t1, t2, t3) = eA∗t3
[
H(2)[P̄1(t1)⊗ Q̄1(t2)]

]
,

= eA∗t3
[
H(2)[(eAt1 B)⊗ (eA∗t2 C∗)]

]
Q̄5(t1, . . . , t5) = eAt5

[
H(2)[P̄1(t1)⊗ Q̄3(t2, t3, t4), P̄3(t1, t2, t3)⊗ Q̄1(t4)]

]
,

= eAt5
[
H(2)[(eAt1 B)⊗ (eAt4 [H(2)(eA∗t2 C∗ ⊗ eA∗t3 C∗)]),

(eAt3 [H(eAt1 B ⊗ eAt2 B)])⊗ (eA∗t4 C∗)
]
,...

Q̄i(t1, . . . , ti) = eAti
[
H(2)[P̄1(t1)⊗ Q̄i−2(t2, . . . , ti−1),

P̄2(t1, t2)⊗ Q̄i−3(t3, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2)⊗ Q̄1(ti−1)]
]
, for all i > 3, i ≡ 1 mod 2,

and Q̄i(t1, . . . , ti) = 0 for all i ≡ 0 mod 2.

Definition 3.33 (Observability Gramian, [BG17]). We define the observability Gramian
Q by means of Q̄ as

Q =
∞

∑
i=1

Qi with Qi =
∫ ∞

0
· · ·

∫ ∞

0
Q̄i(t1, . . . , ti)Q̄∗

i (t1, . . . , ti)dt1 · · ·dti. (3.51)

These infinitely many summands also satisfy a series of a special kind of Lyapunov
equation. The first term

Q1 =
∫ ∞

0
Q̄1Q̄∗

1dt1 =
∫ ∞

0
eA∗t1 C∗CeAt1dt1

is the linear infinite Gramian as given in Definition 3.18, which solves the Lyapunov
equation

A∗Q1 + Q1A + C∗C = 0, (3.52)

as stated in Theorem 3.19, assuming that A is stable. For the second nonzero term, we
find that

Q3 =
∫ ∞

0

∫ ∞

0

∫ ∞

0
Q̄3Q̄∗

3dt1dt2dt3

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eA∗t3

[
H(2)[P̄1(t1)⊗ Q̄1(t2)][P̄1(t1)⊗ Q̄1(t2)]

]∗
(H(2))∗eAt3dt1dt2dt3

=
∫ ∞

0
eA∗t3

[
H(2)[

∫ ∞

0
(eAt1 BB∗eA∗t1)dt1]︸ ︷︷ ︸

P1

⊗ [
∫ ∞

0
(eA∗t2 C∗CeAt2)dt2]︸ ︷︷ ︸

Q1

(H(2))∗
]
eAt3dt3

=
∫ ∞

0
eA∗t3

[
H(2)(P1 ⊗ Q1)(H(2))∗

]
eAt3dt3.

So, the term Q3 is composed of the preceding term Q1 and P1 from the reachability part.
It is the solution of the Lyapunov equation [BG17],

A∗Q3 + Q3A +H(2)(P1 ⊗ Q1)(H(2))∗ = 0. (3.53)
11The same reasoning for the kernel numbering applies as given in footnote 9 on page 38.
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The succeeding Qi’s take the form

Qi =
∫ ∞

0
· · ·

∫ ∞

0
Q̄iQ̄∗

i dt1 · · ·dti

=
∫ ∞

0
eA∗ti

[
H(2)

[( ∫ ∞

0
P̄1(t1)P̄∗

1 (t1)dt1

)
⊗
( ∫ ∞

0
· · ·

∫ ∞

0
Q̄i−2(t2, . . . , ti−1)Q̄∗

i−2(t2, . . . , ti−1)dt2 · · ·dti−1

)
+ · · ·+

( ∫ ∞

0
· · ·

∫ ∞

0
P̄i−2(t1, . . . , ti−2)P̄∗

i−2(t1, . . . , ti−2)dt1 · · ·dti−2

)
⊗
( ∫ ∞

0
Q̄1(ti−1)Q̄∗

1(ti−1)dti−1

)]
(H(2))∗

]
eAtidti

and satisfy the Lyapunov equation

A∗Qi + Qi A +H(2)(P1 ⊗ Qi−2 + · · ·+ Pi−2 ⊗ Q1)(H(2))∗ = 0. (3.54)

Summing up equations (3.52)-(3.54), we have12

A∗
∞

∑
i=1

Qi︸ ︷︷ ︸
Q

+
∞

∑
i=1

Qi︸ ︷︷ ︸
Q

A +H(2)
( ∞

∑
i=1

Pi︸ ︷︷ ︸
P

⊗
∞

∑
i=1

Qi︸ ︷︷ ︸
Q

)
(H(2))∗ + C∗C = 0, (3.55)

from which we infer the following

Theorem 3.34 (Observability Gramian Lyapunov Equation, [BG17]). Consider system
(3.37) and let A be stable. Assuming that the observability Gramian Q exists as in Definition
3.33, it is the solution of the generalized quadratic Lyapunov equation

A∗Q+QA +H(2)(P ⊗Q)(H(2))∗ + C∗C = 0. (3.56)

Balancing and Truncating

The MOR via Balanced Truncation of system (3.37) consists of three major steps:

1. the computation of the reachability and observability Gramians,

2. the computation of the balancing transformation matrices,

3. the projection of the reduced system.

The computationally and mathematically most intricate step is the first one. As we
have seen in the preceding sections, it involves the solution of two generalizedLyapunov
equations, (3.50) and (3.56). Due to their quadratic nature, they are both hard and
costly to solve. Their efficient computation is still an ongoing research question [BG17].
Therefore, we resort to truncating the infinite summation in Definitions 3.30 and 3.33:

PT =
ν

∑
i=1

Pi, QT =
ν

∑
i=1

Qi, (3.57)

12Observe that the equation is actually linear in the Q-terms.

42



3.3. Balanced Truncation for (Quadratic) Dynamic Models

where ν is the number of consecutive Volterra kernels used. For ν = 1 and ν = 3,
we have already explicitly demonstrated that these truncated Gramians satisfy the Lya-
punov equations (3.47) and (3.53).13

While [BG17] propose a scheme based on fixed-point iterations which determines
low-rank Cholesky factors of the Gramians, our approach stays very close to the deriva-
tion of the Gramians. We compute the Volterra kernels directly, add them up to get the
Gramians and then determine their respective Cholesky factors.

Before we state the actual algorithm used to compute the Gramians, we investigate
the key subroutine responsible for solving the Lyapunov equation

AP + PA∗ + BB∗ = 0,

with A ∈ Rn×n stable, B ∈ Rn×m, P = P∗ ∈ Rn×n symmetric, and (A, B) reachable,
i.e., P > 0 and A, B are nonsingular.

The method developed by Hammarling [Ham82] computes the Cholesky factor F

of P instead of P. This has some advantages, e.g., because the Cholesky factor is the
desired objective anyway, or because it has a better condition number than P [Ham82].

The first step is to bring A into Schur form, i.e., into upper triangular form. Since A

is nonsingular, there exists a unitary matrix Q such that

A = QǍQ∗,

where Ǎ is in Schur form. We apply Q to the other equation matrices

P̌ = Q∗PQ, B̌ = Q∗BQ,

and transform the system into an equivalent system in the Schur basis [Ant05; Ham82].
For convenience, we omit the hašek symbol from now on. For the remainder of this
subsection, we assume that A is upper triangular and the Lyapunov equation matrices
are in the Schur basis.

The next step is to partition A, P and B such that

A =

(
A11 A12

0 A22

)
, B =

(
B1

B2

)
, P =

(
P11 P12

P∗
12 P22

)
, (3.58)

where A11 ∈ Rk×k and A22 ∈ R(n−k)×(n−k) are upper triangular, and the other matrix
blocks of A, P and B have matching dimensions [Ant05].

SinceP is positive definite, it can be decomposed asP = FF∗ with an upper triangu-
larmatrixF. To compute theCholesky factorF, we first perform another transformation

ÃP̃ + P̃Ã∗ + B̃B̃∗ = 0, (3.59)
13In our numerical experiments, we have also run tests with ν = 5, for which we have stated the respec-

tive Volterra kernels in Definitions 3.29 and 3.32
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where Ã = TAT−1, B̃ = TB, P̃ = TPT∗, and

T =

(
I −P12P−1

22

0 I

)
, Ã =

(
A11 Ã12

0 A22

)
, B̃ =

(
B̃1

B2

)
, P̃ =

(
P̃11 0

0 P22

)
,

(3.60)
with

Ã12 = A12 − P12P−1
22 A22 + A11P12P−1

22 ,

B̃1 = B1 − P12P−1
22 B2, (3.61)

P̃11 = P11 − P12P−1
22 P∗

12.

With the help of these equations, we can compute the Cholesky factors of P:

P =

(
P̃1/2

11 P12P−1/2
22

0 P1/2
22

)
︸ ︷︷ ︸

F

(
P̃1/2

11 0

P−1/2
22 P∗

12 P1/2
22

)
︸ ︷︷ ︸

F∗

= FF∗, (3.62)

where P̃11 ∈ Rk×k, P12 ∈ Rk×(n−k), and P22 ∈ R(n−k)×(n−k) for k < n. We can succes-
sively compute the individual blocks of P and simultaneously determine F by exploit-
ing triangularity [Ant05].

By comparing equations (3.59), (3.60) and (3.61), we get the equations

A22P22 + P22A∗
22 + B2B∗

2 = 0,

A12P22 − P12[P
−1
22 A22P22 + P−1

22 B2B∗
2 ] + A11P12 + B1B∗

2 = 0, (3.63)

A11P̃11 + P̃11A∗
11 + B̃1B̃∗

1 = 0.

We go backwards in our computations and set k = n − 1 in order to compute the
last row, or respectively column, of the Cholesky factors. The first equation in (3.63) is
a Lyapunov equation which we solve for P22 and get

P22 = − B2B∗
2

A22 + A∗
22

∈ R. (3.64)

We plug this into the second equation in (3.63) and thus obtain

P12 = (A11 + A∗
22In−1)

−1
(

B2

A22 + A∗
22

A12 − B1

)
B∗

2 ∈ Rn−1. (3.65)

These two steps already suffice to calculate the last column of F in (3.62). To deter-
mine the remaining block P̃1/2

11 , we observe that B̃1 = B1 − P12P−1
22 B2 from (3.61), and

that the last equation in (3.63) is also a Lyapunov equation but of dimension n − 1. We
can now iterate these steps and determine the entire Cholesky factor F [Ant05; Ham82].

Algorithm 3.1 depicts the computation of the Cholesky factor F following Ham-
marling’s method as implemented in the MATLAB function lyapchol and in SLICOT
[Ham82; iST].
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Algorithm 3.1: Lyapunov-Cholesky Routine
Input: square matrix A, matrix B.
Output: Cholesky factor F, where F∗F = P is a solution of the Lyapunov

equation AP + PA∗ + BB∗ = 0.
1 Compute Schur factorization of A:
2 QAQ∗ := A.
3 Compute QR factorization of B:

4 L̃

[
M̃

0

]
:= B,

5 where L̃ is an n × n unitary matrix and M̃ is a square upper triangular matrix.
6 Compute B̃ := M̃Q and perform QR factorization:
7 LM := B̃.
8 Solve the Lyapunov equation A(U∗U) + (U∗U)A∗ = MM∗ for U, where U is

upper triangular.
9 Compute QR factorization of QU to obtain Cholesky factor F:
10 QF := UQ∗.

We now turn to the algorithm to determine the truncated Gramians. The procedure
for the reachability Gramian is given in Algorithm 3.2. It is an immediate implementa-
tion of its derivation, but with two amendments: The first is the illustrated computation
of the Cholesky factors of the Volterra kernels instead of the kernels themselves in lines
2 and 14-15. The second is the shift of matrix A by a small parameter α > 0 in line
1. Due to the system lifting described in Section 4.2.2, the matrix is very sparse with
EVs equaling 0, and is therefore not stable. This property is of great significance, e.g.,
to derive the Gramians, solve the Lyapunov equations in Theorems 3.19, 3.31 and 3.34,
and apply the Lyapunov-Cholesky routine in Algorithm 3.1. Therefore, we shift A in
Algorithm 3.2 to make it stable.14

Remark 3.35. While H = H̃ is sparse, forming the quadratic product in line 12, and
especially the Kronecker product of Pk ⊗ Pj in line 9 is not. This causes a substantial
computational burden.

We omit stating the algorithm for the observability Gramian here15 on account of the
parallels to the computation of the reachability Gramian. Aside from the exchange of
matrix B with matrix C, and the supplementary input of the Volterra kernels P1, . . . , Pν,
there is only the additional construction of the mode-2 unfolding to obtain matrixH(2).
This is necessary to compute the Volterra kernels for ν > 3 as indicated in Definition
3.32, and is demonstrated in Appendix B.2.

This concludes the first major step of reducing system (3.37) by Balanced Trunca-
14We go into greater detail on making A stable in Section 4.4.
15You can find the Algorithm C.1 in Appendix C.
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Algorithm 3.2: Iterative Scheme to Compute Truncated Gramian PT
Input: quadratic system matrices A, H, B, shift parameter α > 0, number of

Volterra kernels ν

Output: Cholesky factor R (upper triangular matrix) of the truncated
reachability Gramian PT , Volterra kernels P1, . . . .Pν

1 Shift matrix A with α to make the matrix stable: Aα := A − αI.

2 Determine Cholesky factor R1 of Volterra kernel P1 by calling Algorithm 3.1
with A := Aα, B := B, and compute P1 := R∗

1 R1.
3 Set P2 := 0.
4 Compute Cholesky factors R3, . . . , Rν to determine Volterra kernels P3, . . . Pν:
5 for i = 3 : ν do
6 Initiate Pkron

i := 0; j := i − 2.
7 Sum up Kronecker products of previously computed Pk.
8 for k = 1 : i − 2 do
9 Pkron

i := Pkron
i + Pk ⊗ Pj;

10 j := j − 1;
11 end for
12 Set Hkron

i := H Pkron
i H∗.

13 Determine Cholesky factor Bi of Hkron
i , i.e., compute B∗

i Bi := Hkron
i .

14 Update Cholesky factor Ri by calling Algorithm 3.1 with
15 A := Aα, B := Bi.
16 Compute Volterra kernel Pi := R∗

i Ri.
17 end for
18 Determine PT by summing up Volterra kernels:
19 PT = 0;
20 for i = 1 : ν do
21 PT = PT + Pi.
22 end for
23 Determine Cholesky factor R of PT , i.e., compute R∗R := PT .

tion. The other two, namely, the construction of the balancing transformation matrices
and the projection of the reduced-order system in (3.30)–(3.35), are almost exactly the
same as in the linear case - onlymatrix H has to be projected in addition. The state vector
approximation, x ≈ V x̂, relates the ROM to the FOM again, and we get the ROM,

Σ̂ =

(
W∗AV W∗H(V ⊗ V) W∗B

CV

)
∈ R(nρ+p)×(nρ+n2

ρ+m), (3.66)

the quadratic version of the reduced linear system in (3.36). All computation steps are
put together in Algorithm 3.3. Note that the procedure requires the reduction order nρ

as an input parameter rather than determining this quantity as part of the procedure.
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We have done this to test different values of nρ.

Algorithm 3.3: Balanced Truncation Algorithm for Quadratic Systems
Input: quadratic system matrices A, H, B, C, reduction order nρ, shift

parameter α > 0, number of Volterra kernels ν.
Output: reduced matrices Â, Ĥ, B̂, Ĉ, projection matrices V ,W .

1 Compute Cholesky factor R of reachability Gramian P with Algorithm 3.2 and
Cholesky factor S of observability Gramian Q with the corresponding
algorithm, respectively.

2 Compute the Singular Value Decomposition of RS∗:
3 VΣW∗ = RS∗,
4 where Σ = diag(σ1, . . . , σn) contains the singular values in decreasing order.
5 Construct projection matrices V ,W :

6 V = R∗Vnρ Σ− 1
2

nρ
and W∗ = Σ− 1

2
nρ

W∗
nρ

S,
7 where Σnρ contains the nρ largest singular values of Σ, and Vnρ , Wnρ contain

the corresponding left- and right-singular vectors, respectively.
8 Compute reduced-order system:
9 Â = W∗AV , Ĥ = W∗H(V ⊗ V), B̂ = W∗B, Ĉ = CV .

3.4 Proper Orthogonal Decomposition

Weuse thewell-established Proper Orthogonal Decomposition (POD)method in order
to evaluate the validity of our numerical tests with BT. Like BT, it is an SVD-based
method. It can be applied to highly complex systems. The method is frequently used
in MOR, not only for the reduction of linear but also explicitly for general nonlinear
systems [AS01].

To compute the POD of the quadratic system (3.37), we start by fixing the input u

and calculate the state trajectory at certain time instances tk. These are stored in the
snapshot matrix X [AS01], i.e.,

X = [x(t1) x(t2) · · · x(tζ)] ∈ Rn×ζ , (3.67)

where ζ is the number of snapshots. There is no general rule how large ζ should be.
Essentially, it holds that, the larger n, the larger ζ as well, usually ζ � n. We then
determine the SVD of X and look at the behavior of the SVs. If they fall off sharply, we
can compute a low-order version of the original system, because

X = VΣW∗ ≈ Vnρ ΣnρW∗
nρ

, (3.68)

where nρ is the number of the largest SVDs and the corresponding left singular vectors
of X , respectively, and nρ � n as before. Once more, these nρ leading columns of V
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span a low-dimensional space in which the state vector x(t) can be approximated by
another vector x̂(t). We partition V =

(
Vnρ Vn−nρ

)
and set the projection matrix

V = Vnρ . (3.69)

Because of (3.68), we have x(t) ≈ V x̂(t) with x̂(t) ∈ Rnρ . Using this, we can relate the
FOM (3.37) to the ROM (3.39). Putting this in terms of the state-space descriptions of
quadratic systems (3.38), we set T = V to acquire the quadratic ROM (3.40) [Ant05],

Σ̂ =

(
V∗AV V∗H(V ⊗ V) V∗B

CV

)
∈ R(nρ+p)×(nρ+n2

ρ+m). (3.70)

From the derivation of the PODmethod one large drawback is apparent: We receive
SVs which are not system-invariant, because the constructed reduction is profoundly
contingent on the initial fixation of the input function, as well as the number of snap-
shots and the time instances at which snapshots are taken [AS01].

Algorithm 3.4 illustrates how we implemented the method to reduce the quadratic
dynamic system (3.37) to the ROM (3.39). There are more elaborate and/or efficient
ways to obtain the projection matrices (e.g., by optimization of the initial input, the
collection of snapshots, the automatic determination of an adequate reduction order or
error estimation, see, e.g., [Pin08; RP03; Vol13]), but since we only use this method to
evaluate the results of Balanced Truncation, we nevertheless adopt a naive approach to
compute the POD.

Algorithm 3.4: Proper Orthogonal Decomposition for Quadratic Systems
Input: quadratic system matrices A, H, B, C, reduction order nρ, number of

snapshots ζ, time interval T.
Output: reduced matrices Â, Ĥ, B̂, Ĉ, projection matrix V .

1 Create the snapshot matrix X by solving the state equation in the ODE system
(3.37) at ζ different instances with T

ζ distance.
2 Compute the Singular Value Decomposition of X :
3 VΣW∗ = X ,
4 where Σ = diag(σ1, . . . , σn) contains the singular values in decreasing order,

and V, W contain the corresponding left-singular and right-singular
vectors, respectively.

5 Truncate and set the projection matrix V = Vnρ , which contains the nρ singular
vectors corresponding to the nρ largest singular values of Σ.

6 Compute reduced-order system:
7 Â = V∗AV , Ĥ = V∗H(V ⊗ V), B̂ = V∗B, Ĉ = CV .
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CHAPTER 4

Mathematical Modeling

So far, we have pursued two independent matters: We have derived the Effective Net-
work and Synchronous Motor approaches modeling the basic network equations (2.1)
which govern the nonlinear dynamics of coupled phase oscillators in Chapter 2. In
Chapter 3, we have introduced the basics of MOR and Proper Orthogonal Decomposi-
tion, and in particular presented the quadratic version of Balanced Truncation in more
detail. In this chapter, we connect the CO models with MOR by BT and POD.

As we have seen in the EN ODE system (2.20) and in the SM ODE system (2.25),
both CO approaches model the nonlinear system dynamics using ODEs of the form

2Ji

ϕR
δ̈i(t) +

Di

ϕR
δ̇i(t) = Fi − ∑

j=1, j 6=i
Kij sin

(
δi(t)− δj(t)− γij

)
, (4.1)

with i = 1, . . . , nco, and nco depending on the CO model’s coupled oscillator represen-
tation. For convenience, we restate the meaning of the parameters in Table 4.1.

Table 4.1: Coupled Oscillator Model Parameters

model-independent model-dependent

ϕR reference
frequency

Fi determines the i-th oscillator’s inherent frequency
ϕ∗

i := ϕR(1 +
Fi
Di
) along with Di

Ji inertia Kij coupling strength between oscillators i and j

Di damping γij phase shift involved in oscillator coupling
nco number of nodes in coupled oscillator representation:

nco = ng for EN model
nco = ng + n` for SM model

By adding the initial conditions

δ(0) = δ0, δ̇(0) = δ̇0, (4.2)

we turn the ODE system into an initial value problem (IVP). Because the RHS of the
ODEs is smooth and bounded, it has a unique solution.

Before we can apply quadratic BT, wemust first make sure the system (4.1) satisfies
the necessary assumptions and requirements stipulated in Section 3.3, i.e, it must have a
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quadratic structure, itmust be an IVPwith initial condition x0 = 0, and itmust be stable.
The application of POD only demands that the system must have quadratic structure
and be an IVP.

First, we give the system the appropriate quadratic structure. This is a two-step pro-
cess. In Section 4.1, we convert the 2nd-order ODE system into a 1st-order ODE system
by substituting the state variable δ with an auxiliary variable. The next step is to bring
the system into quadratic form and is divided into two parts: In Section 4.2.1, we trans-
form each nonlinear equation into a quadratic equation, again by substitution, and in
Section 4.2.2, we aggregate the equations into matrices. Although strictly speaking, the
first part of step 2 is redundant for the further considerations of this thesis, it assists
in making the transformation of the ODEs into a quadratic system more comprehensi-
ble. The process of structuring a system by inserting auxiliary variables and variable
transformations is called lifting [KW19]. In Section 4.3, we come back to the initial con-
dition (4.2) and discuss its lifting to agree with the quadratic system. At the end of this
chapter, in Section 4.4, we lay out the algorithmic application of BT and POD to the CO
models.

4.1 Transformation to Nonlinear Dynamic 1st-Order ODE Sys-
tem

This step is necessary not only en route to the quadratic formulation, but also to solve
the ODEs with the help of software like MATLAB, which can only handle 1st-order
differential equations.

We transform system (4.1) by substituting each 1st-order state variable with an aux-
iliary variable and add each substitution to the system of equations. Accordingly, defin-
ing ωi(t) := δ̇i(t), we obtain[

δ̇i(t)

ω̇i(t)

]
=

 ωi(t)
ϕR
2Ji

Fi −
ϕR
2Ji

∑j 6=i Kij sin
(

δi(t)− δj(t)− γij

)
− Di

2Ji
ωi(t)

 , (4.3)

with i = 1, . . . , nco.
So, merely by bringing the equations into computable form, the system size doubles.

As mentioned in Remark 2.1, due to the construction of the CO models, this affects the
SM model more than the EN model.

4.2 Transformation to Quadratic Dynamic ODE System

4.2.1 Quadratic Dynamic ODE System - Equation version

The nonlinear component of system (4.1) is the sin-function acting on the difference
of the state variables δi, δj and the phase shift γij. Turning the nonlinear system with-
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4.2. Transformation to Quadratic Dynamic ODE System

out special structure into a system in quadratic form requires another substitution with
auxiliary variables. Before we can replace variables, however, we must first break up
the sin-term such that each part only depends on one variable or parameter. To achieve
this, we make use of the trigonometric addition formulae

sin(a ± b) = sin(a) cos(b)± cos(a) sin(b),

cos(a ± b) = cos(a) cos(b)∓ sin(a) sin(b).

Setting a := δi − δj and b := γij, and employing the sine addition formula, we get

sin
(
(δi − δj)− γij

)
= sin(δi − δj) cos(γij)− cos(δi − δj) sin(γij). (4.4)

Now, setting a := δi and b := δj, and then applying the sine and cosine addition formu-
lae simultaneously to the respective parts in equation (4.4), we obtain

sin(δi − δj) = sin(δi) cos(δj)− cos(δi) sin(δj), (4.5)

cos(δi − δj) = cos(δi) cos(δj) + sin(δi) sin(δj). (4.6)

Putting (4.4), (4.5) and (4.6) together, we acquire

sin
(
δi − δj − γij

)
= sin(δi) cos(δj) cos(γij)− cos(δi) sin(δj) cos(γij)

− cos(δi) cos(δj) sin(γij)− sin(δi) sin(δj) sin(γij). (4.7)

Replacing the sin(δi − δj − γij) term in the 1st-order system (4.3) with equation (4.7),
substituting si(t) := sin(δi(t)), ci(t) := cos(δi(t)), γs

ij := sin(γij), γc
ij := cos(γij), and

adding the new variables to the system, we get



δ̇i(t)

ω̇i(t)

ṡi(t)

ċi(t)


=



ωi(t)
ϕR
2Ji

Fi −
ϕR
2Ji

∑j 6=i Kij

(
si(t)cj(t)γc

ij − ci(t)sj(t)γc
ij

− ci(t)cj(t)γs
ij − si(t)sj(t)γs

ij

)
− Di

2Ji
ωi(t)

ci(t)ωi(t)

−si(t)ωi(t)


,

(4.8)
with i = 1, . . . , nco. So, the system complexity has doubled once more. We must now
work with 4nco state equations, having started with nco. Again, the lifting has a larger
effect on the SM model than on the EN model.
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4.2.2 Quadratic Dynamic ODE System - Matrix version

Finally, we want to reassemble the separate equations such that we receive a matrix
system of the form similar to the one given in (3.37)1 with n = 4nco,

ẋ(t) = Ax(t) + H
(
x(t)⊗ x(t)

)
+ Bu(t),

y(t) = Cx(t),

x(0) = x0,

(4.9)

where A ∈ R4nco×4nco , H ∈ R4nco×(4nco)2 , B ∈ R4nco×m, C ∈ Rp×4nco and x(t) ∈ R4nco ,
u(t) ∈ Rm, and y(t) ∈ Rp.

In order to achieve this, we split up the equations into their linear, quadratic and
input parts, and use them as building blocks for the system matrices. At the end, we
specify an output matrix C, which is also necessary to evaluate the MOR performance
in Chapter 5.

The Linear Part

The starting point of the construction is the state vector which we define as2

x =


δ

ω

s

c

 , where

δ = [δ1, . . . , δnco ]
∗,

ω = [ω1, . . . , ωnco ]
∗,

s = [s1, . . . , snco ]
∗,

c = [c1, . . . , cnco ]
∗.

(4.10)

The linear terms of the equation system (4.8) are those which are linear in ωi. This
corresponds to the first nco equations and those terms in the next nco equations with
a damping/inertia coefficient. Hence, we define − D

2J := diag( D1
2J1

, . . . , Dnco
2Jnco

) and form
matrix A describing the linear dynamics of the system as

A =


0 Inco 0 0

0 − D
2J 0 0

0 0 0 0

0 0 0 0

 .

Figure 4.1 depicts the sparsity pattern of A for an exemplary small PN test system
[NM15b; ZM16] modeled by the EN approach. As mentioned at the end of Section 3.3,
this matrix is by construction very sparse, has eigenvalues equaling zero and is there-
fore never stable. This holds independent of the CO model and PN test system. In fact,
A in the SM model is usually even sparser than A in the EN model. For example, if
we take the same 3-generator/9-nodes system of Figure 4.1, but model it using the SM
approach instead, then nco = 9 and A is of size (36× 36)with only 18 nonzero elements.

1The only difference is that we do not (yet) require the system to have a zero initial value. We deal
with this requirement for BT in Section 4.3. POD can be applied directly to system (4.9).

2For the sake of clarity, we omit the parameter t for the rest of this chapter.
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Figure 4.1: Sparsity Pattern of A (EN model, 3-generator/9-nodes system, nco = 3)

The Quadratic Part

The quadratic expression of the state vector contains the products of every combina-
tion of the state vector elements as they were defined in (4.10), i.e., it is the Kronecker
product3 with itself:

x ⊗ x =

[
δ ⊗ x ω ⊗ x s ⊗ x c ⊗ x

(4.11)

]∗
.

We take a closer look at the last component, c ⊗ x, to get a better understanding of this
vector’s architecture. The other three components have a similar structure. Fixing x for
the moment, we have

c ⊗ x =

[
c1 ⊗ x , . . . , ci ⊗ x

(4.12)

, . . . , cnco ⊗ x
]∗

. (4.11)

Now fixing index i of c and unfixing x, we get

ci ⊗ x =
[
ciδ1, . . . , ciδnco , ciω1, . . . , ciωnco , cis1, . . . , cisnco , cic1, . . . , cicnco

]∗
, (4.12)

which is just a 4nco-sized building block of the entire vector. Doing this with all the 4nco

elements of the state vector yields a Kronecker product x ⊗ x of size (4nco)2 × 1. For
convenience, we refer to x ⊗ x as the Kronecker state vector.

The matrix H models the nonlinear behavior of the system. We find quadratic com-
ponents in all except the first nco equations of (4.8). As defined by the Kronecker state
vector, these are all the terms containing products of the auxiliary variables ωi, si and ci

with each other. We include their coefficients in H.
Before defining H, we explain some notation. Looking at H in (4.13) below, you

can see labels above and on the left side of the matrix. Components or elements of
the Kronecker state vector written above (blocks of) the matrix indicate that the associ-
ated coefficients are contained in these matrix columns. Components or elements of the
state vector derivative found left of the matrix denote to which parts of the derivative
H maps to. In this manner, the notation H(ω̇, s ⊗ x) is used to focus on the block of H

3For the definition of the Kronecker product, see Appendix B.1.
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whose columns contain the coefficients of s ⊗ x and whose rows map to the ω̇ part of
the state vector derivative. Furthermore, let ∓ ϕR

2J Kγs/c assemble the coefficients corre-
sponding to the sisjγ

s
ij and sicjγ

c
ij products in system (4.8), and let − ϕR

2J Kγc/s likewise
collect the cisjγ

c
ij and cicjγ

s
ij products. The exponents “s/c” and “c/s” symbolize the or-

der in which the sine and cosine of γ are multiplied with the products. In like manner,
“∓” indicates that the term −sisjγ

s
ij comes before sicjγ

c
ij. The quadratic part of system

(4.8) is then represented by matrix H as follows

H =



δ⊗x ω⊗x s⊗x c⊗x

δ̇ 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

ω̇ 0 · · · 0 0 · · · 0 · · · ∓ ϕR
2J Kγs/c · · · · · · − ϕR

2J Kγc/s · · ·
ṡ 0 · · · 0 0 · · · 0 0 · · · 0 · · · 1́ · · ·
ċ 0 · · · 0 0 · · · 0 · · · −1́ · · · 0 · · · 0

,

(4.13)

where±1́ symbolizes that “certain” entries in the respectivematrix blocks are±1. In or-
der to clarify, we first inspect the blue box, i.e., the H(ċ, s ⊗ x)-block of size (nco × 4n2

co)

you see in (4.14) below. It corresponds to the H(3nco + 1 : 4nco, 8n2
co + 1 : 12n2

co) coor-
dinates of H using MATLAB notation. The values under the braces denote the relative
column index of the associated siωi entry with respect to s ⊗ x. To know the entry’s ab-
solute column index in H, you just have to add 8n2

co to the relative index. This number
comes from skipping the first δ ⊗ x and ω ⊗ x elements in x ⊗ x to arrive at the first
entry of s ⊗ x. Just like c ⊗ x in (4.11), each of these components has length 4n2

co.
The only nonzero elements in H(ċ, s ⊗ x) mapping to ċ are the siωi products with

the same index in system (4.8). We can therefore skip the first nco columns in the s ⊗ x

part of H corresponding to s1 ⊗ δ. So, the first −1 entry in the block, that assigns s1ω1

to ċ1 has the relative column index nco + 1. As we move along the Kronecker state
vector entries and at the same time along the rows and columns of H(ċ, s ⊗ x) to match
the corresponding elements, we always have to add the shift of nco. Furthermore, to
get from element siωi to si+1ωi in the Kronecker state vector, we have an offset of 4nco

which can be inferred from (4.12). So, moving from row i in H(ċ, s ⊗ x) to row i + 1, we
have to add a shift of 4nco to the column index. Plus, we need to add i to hit the right
element in the Kronecker state vector. The H(ċ, s ⊗ x)-block is then

H(ċ, s ⊗ x) :=



··· s1ω1 siωi snco ωnco ···

ċ1 · · · -1︸︷︷︸
nco+1

· · ·

ċi · · · -1︸︷︷︸
nco+(i−1)4nco+i

· · ·

ċnco · · · -1︸︷︷︸
4n2

co+nco

· · ·


, (4.14)

where i = 1, . . . , nco, and the zero entries are omitted. The H(ṡ, c ⊗ x)-block is analo-
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gously constructed.
Next, we address the i-th row of the green-framed box in (4.13), the H(ω̇i, s ⊗ x)-

block of size (1 × 4n2
co). The block matches the H(nco + i, 8n2

co + 1 : 12n2
co) coordinates

of H in MATLAB notation. It maps the sisj and sicj products to ω̇i. Like above, the
values under the braces indicate the relative column index of the associated sisj or sicj

entry with respect to s ⊗ x. The absolute column index in H is again attained by adding
8n2

co to the relative index.
The nonzero elements in H(ω̇i, s ⊗ x) mapping to ω̇i are the sisj and sicj products,

where i 6= j in system (4.8). With the same reasoning as above, we can pass over the
first 2nco columns in the s ⊗ x part of H, skipping the s ⊗ ω component, too. Thus, the
first entry in the block (a zero coefficient), whichmaps s1s1 in the Kronecker state vector
to ω̇1, has the relative column index 2nco + 1. This time, the shift of 2nco has to be added
to the column index as we advance along the elements in the Kronecker state vector and
the columns of H(ω̇i, s ⊗ x), always passing the δi and ωi elements in s ⊗ x. To get from
entry sisj to si+1sj, we add another shift of 4nco as for the H(ċ, s ⊗ x)-block. To go from
sisj to sicj, we have an additional offset of nco.

Defining the shorthand notation ∓Γs/c
i,j = ∓ ϕR

2Ji
Ki,jγ

s/c
i,j , for i = 1, . . . , nco, we have

H(ω̇i, s ⊗ x) :=

sis1 sisi sisj[
· · · −Γs

i,1︸︷︷︸
2nco+(i−1)4nco+1

· · · 0︸︷︷︸
2nco+(i−1)4nco+i,

⇔j=i

· · · −Γs
i,j︸︷︷︸

2nco+(i−1)4nco+j

sic1 sici sicj

· · · Γc
i,1︸︷︷︸

3nco+(i−1)4nco+1

· · · 0︸︷︷︸
3nco+(i−1)4nco+i,

⇔j=i

· · · Γc
i,j︸︷︷︸

3nco+(i−1)4nco+j

· · ·
]
,

where j = 1, . . . , nco. The block of H corresponding to the c ⊗ x components of the
Kronecker vector mapping to ω̇ is similarly composed.

The 4nco × (4nco)2-sized matrix H is sparse, it only has the coefficients of the sine
and cosine substitutes and corresponding±1’s as nonzero entries. Figure 4.2 shows the
sparsity pattern of H for the same small PN test case modeled by the EN approach as
in Figure 4.1. Again, for every CO model and test system, H features the same sparsity
pattern.

Remark 4.1. The matrix H gets large very fast which adds to the computational costs
mentioned in Remark 3.35 in connection with the computation of the Volterra kernels.

The Input and Output Parts

Only the constant terms ϕR
2Ji

Fi have not been dealt with in the equation version of the
lifted system (4.8). As the quadratic system (4.9) does not provide for constant terms,
we assign these values to the input part of the systemwhich would otherwise be empty.
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Figure 4.2: Sparsity Pattern of H (EN model, 3-generator/9-nodes system, nco = 3)

So, both the input vector u and “matrix” B are almost zero vectors of length 4nco with
values only in the positions corresponding to ω̇:

u =


0

ω̇ 1

0

0

 ∈ R4nco , B∗ =


0

ω̇
ϕR
2J F

0

0

 ∈ R4nco×1,

where ϕR
2J F :=

[
ϕR
2J1

F1, . . . , ϕR
2Jnco

Fnco

]∗
. Note that u is time-invariant here.

Since the coupled oscillator representation does not include an output of any kind,
we propose two alternatives to test if the choice makes a difference with respect to the
error. Both versions are vectors of size (1 × 4nco).

The first option simply puts out the first oscillator’s phase angles as they were com-
puted by solving the ODE system, i.e.,

C1st =
[ δ1 δ2 ··· δnco ω s c

y 1 0 · · · 0 0 0 0
]

∈ R1×4nco . (4.15)

The second option calculates the arithmetic mean of all the phase angles:

Cam =
[ δ1 ··· δnco ω1 ··· ωnco s1 ··· snco c1 ··· cnco

y 1
nco

· · · 1
nco

0 · · · 0 0 · · · 0 0 · · · 0
]

∈ R1×4nco . (4.16)

Remark 4.2. Observe that the constructed quadratic representation of the nonlinear PN
ODE system (4.1) is not unique, even if we disregard the arbitrary construction of C.
To give only one example, since the individual elements in the Kronecker state vector
commute, we could have assigned the coefficients corresponding to factor sicj in the
H(ẋ, s⊗ x)-block also to cjsi in the H(ẋ, c⊗ x)-block in the composition of H. The critical
point is to only assign every coefficient only once.

Remark 4.3. We implemented all derived representations of the nonlinear PN system
(4.1) such that it can be solved inMATLAB. Once you have generated the necessary CO
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model parameters with the pg_sync_models toolbox [NM15b], the respective functions
automatically restructure the model into a general 1st-order nonlinear ODE system, or
a quadratic ODE system in equation or matrix representation, respectively. The system
can then be solved by built-inMATLAB or self-built ODE solvers, and the quadraticma-
trix implementation can be reduced by Algorithms 3.3 and 3.4 presented in Section 3.3.
You can find the codes in Appendix C.

4.3 Nonzero Initial Values

At the beginning of this chapter, we created the initial value problemby adding δ(0) = δ0

and δ̇(0) = δ̇0 in (4.2) to the ODE system (4.1). One of the assumptions of Balanced
Truncation is an initial value of zero. The state variable x, which we defined in (4.10)
in the matrix version of the quadratic system, is a concatenation of vectors constructed
from the auxiliary variables in Section 4.2.1. These substitution variables are all func-
tions of δ. So, choosing δ0 in (4.2) automatically determines the other components of
x0. We set

δi(0) = δ0i, ω0i = ˙δ0i, s0i = sin(δ0i), c0i = cos(δ0i),

for i = 1, . . . , nco. The initial value of the quadratic system (4.9) is thus

x0 =


δ0

ω0

s0

c0

 , where

δ0 = [δ01, . . . , δ0nco ]
∗,

ω0 = [ω01, . . . , ω0nco ]
∗,

s0 = [s01, . . . , s0nco ]
∗,

c0 = [c01, . . . , c0nco ]
∗.

As sin(δ0i) and cos(δ0i) can never simultaneously be zero for the same δ0i, it holds

x0 6= 0. (4.17)

For this reason, we have to adjust the system, so BT can be applied.

Remark 4.4. Not preparing for a nonzero initial value can have unexpected consequences
and the result quality can suffer remarkably.

We introduce a new variable x̃ which is zero by definition, i.e., for x(0) = x0 6= 0,
we set

x̃ = x − x0, and x̃(0) = 0.

Using this vector, we transform the entire system in order to obtain an equivalent repre-
sentation [FKR+04]. We apply the distributivity and associativity as well as the mixed
product properties of the Kronecker product (see the 3rd and 6th properties in Theo-
rem B.2), it holds:

(x̃ + x0)⊗ (x̃ + x0) = (x̃ + x0)⊗ x̃ + (x̃ + x0)⊗ x0

= x̃ ⊗ x̃ + x0 ⊗ x̃ + x̃ ⊗ x0 + x0 ⊗ x0

(4.18)
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and,
(x̃ ⊗ x0) + (x0 ⊗ x̃) =

(
(I ⊗ x0) + (x0 ⊗ I)

)
x̃. (4.19)

Using the definition of x̃ to obtain the new representation, we first transform the state
equations for which we get

˙̃x = Ax + H(x ⊗ x) + Bu

= A(x̃ + x0) + H
(
(x̃ + x0)⊗ (x̃ + x0)

)
+ Bu.

Exploiting the relations (4.18) and (4.19) yields

˙̃x
(4.18)
= Ax̃ + Ax0 + H

(
(I ⊗ x0) + (x0 ⊗ I)

)
x̃ + H(x̃ ⊗ x̃) + H(x0 ⊗ x0) + Bu

(4.19)
=

(
A + H

(
(I ⊗ x0) + (x0 ⊗ I)

))
x̃ + H(x̃ ⊗ x̃) +

[
B Ax0 + H(x0 ⊗ x0)

] [
u 1

]∗
.

Then, we transform the output equations of the quadratic system,

ỹ = Cx = C(x̃ + x0) = Cx̃ + Cx0. (4.20)

Now, we can redefine the matrices and vectors of the transformed quadratic system:

Ã = A + H
(
(I ⊗ x0) + (x0 ⊗ I)

)
,

B̃ = [B Ax0 + H(x0 ⊗ x0)],

H̃ = H, (4.21)

C̃ = C,

ũ = [u 1]∗.

Once more, Figure 4.3 exemplifies on a small scale what holds for both CO models
and all PN test systems: This transformation makes Ã less sparse, but the matrix is
nonetheless not stable. As the sparsity pattern shows, Ã must have EVs equaling 0, i.e.,
Ã is only semi-stable.
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Figure 4.3: Sparsity pattern of Ã (EN model, 3-generator/9-nodes system, nco = 3)

Remark 4.5. We also use the transformed system (4.21) to solve the FOM, when we
compare solutions of ROMs obtained by BT.
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4.4 Application of MOR to the Quadratic Dynamic Power Net-
work System

With the transformedmatrices (4.21), the COmodels are in the required quadratic form
(3.37) with zero initial value. However, a basic prerequisite for the application of BT is
a stable system as it is necessary in the derivation of the reachability and observability
Gramians, the computation of the Lyapunov equations in Theorems 3.19, 3.31 and 3.34,
and the Lyapunov-Cholesky routine inAlgorithm3.1. By Theorem3.15, system stability
demands a stable matrix A. But even after the transformation in Section 4.3, Ã is only
semi-stable and therefore does not satisfy the necessary condition for system stability.

To make Ã stable, we subtract a small positive parameter α from its diagonal, i.e.,
we shift the matrix with Ãα = Ã − αI. This step is independent of the nonzero trans-
formation and we only apply it to Ã and no other system matrices or vectors. Also,
the shift is restricted to the balancing part of BT, i.e., the computation of the Gramians
(which subsequently influences the construction of the projectionmatrices). The actual
truncation is applied to the unshifted matrix Ã. The thus reduced Â is used to solve the
ODE. Furthermore, POD does not assume a stable system, so there is no need to shift
A.

The system is now ready for Model Order Reduction. We apply BT to the system

Σ̃ =

(
Ã H̃ B̃

C̃

)
, (4.22)

with transformed zero initial value, x̃(0) = 0. The subsequent balancing computations
depend on the shift α. We therefore mark the respective matrices with a subscripted α.
The basis of the BT projection matrices are the Cholesky factors Rα and Sα of the trun-
cated reachability and observability Gramians,Pα,T andQα,T , respectively. To compute
the Gramians, we determine their Volterra kernels by solving the Lyapunov equations
in (3.48) and (3.54) for the transformed system with a stable matrix Ãα with Algo-
rithm 3.24 which uses the Lyapunov-Cholesky Algorithm 3.1 as a subroutine.

The parameter ν, i.e., number of Volterra kernels, determines where the infinite
sums in Definitions 3.30 and 3.33 are cut off. We then compute the Cholesky factors
Pα,T = R∗

αRα and Qα,T = S∗
αSα, as in (3.30). The SVD (3.31) of the product of the

Cholesky factors VαΣαW∗
α = RαS∗

α provide the matrices Vα and Wα consisting of the
left- and right-singular vector corresponding to the SVs in Σα in decreasing order. With
these matrices, we construct the BT projection matrices as in (3.35), Vα = R∗

αVα,nρ Σ− 1
2

α,nρ

and W∗
α = Σ− 1

2
α,nρ

W∗
α,nρ

Sα.
If the decline of the SVs is fast, we can approximate the FOM by the ROM via the

projectionmatrices. Specifically, the state vector x̃ is related to the reduced state vector x̂

by x̃ ≈ V x̂, i.e., x̂ is an approximation of x̃ that lives in a low-dimensional space spanned
4Plus, we use the counterpart of the Pα,T algorithm to compute Qα,T , see Algorithm C.1.
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by the columns of Vα. The ROM is then
˙̂x(t) = W∗

α ÃVα x̂(t) +W∗
α H̃(Vα ⊗ Vα)

(
x̂(t)⊗ x̂(t)

)
+W∗

α B̃ũ(t),

ŷ(t) = C̃Vα x̂(t), x̂(0) = W∗
α x̃(0).

(4.23)

As POD is not as demanding as BT, we apply the method to the system

Σ =

(
A H B

C

)
, (4.24)

with a given initial value x(0) = x0. The POD projection matrices are based on the
snapshot matrix X , (3.67). Its size is determined by the parameter ζ, the number of
snapshots taken of the state trajectory. The SVD (3.68) of the snapshot matrix VΣW∗ =

X , likewise, provides the left- and right-singular vector corresponding to the SVs in Σ

in decreasing order. We get the projection matrix V = W = Vnρ , as in (3.69).
In analog to BT, the projection of the state vector, x̃ ≈ V x̂, relates the FOM to the

ROM. Should the SVs fall off rapidly, we can approximate the FOM by the ROM via the
projection matrices, i.e.,

˙̂x(t) = W∗AV x̂(t) +W∗H(V ⊗ V)
(
x̂(t)⊗ x̂(t)

)
+W∗Bu(t),

ŷ(t) = CV x̂(t), x̂(0) = W∗x(0).
(4.25)

The size of the projectionmatrices (and by extension the size of the reduced system)
depends on the reduction order nρ. The value of this parameter is in turn determined
by the decline of the respective SVs. The steeper they fall, the smaller nρ can be chosen.

The reduced ODE systems (4.23) and (4.25) can now be solved.
The state x has the structure as in (4.10), with sin- and cos-auxiliary variables in the

third and fourth component. We want to check, among other things, if the sum of the
squares of the respective state elements satisfy the PTI. Before we can measure this, we
need to pull the reduced vector back into the high-dimensional lifted space by applying
the projection matrix Vα from the left, x̃ = Vα x̂ for BT and x = V x̂ for POD. The ODE
solution determined with the help of POD is now ready for the error analysis. Before
we can start the analysis for BT, however, we require to undo the transformation due
to the nonzero initial value. To that end, we add Cx0 to output ŷ (see equation (4.20)),
and the nonzero initial value x0 to the pulled-back state vector (see equation (4.17)),
i.e., the ODE solution state vector aided by BT is x = Vα x̂ + x0.

Table 4.2 summarizes the features of the two MOR methods.
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Table 4.2: Attributes of MOR Methods

BT POD

key matrix reach. Gram. Pα,T , Def. 3.30, snapshot matrix X (3.67)
obs. Gram. Qα,T , Def. 3.33

decomposition Cholesky (3.30), SVD (3.31) SVD (3.68)
nonzero transformation yes no
α-shift of A yes no
reduction order nρ nρ

projection matrices Vα,Wα (3.35) V = W (3.69)
state approximation x̃ ≈ Vα x̂ x ≈ V x̂

parameters # Volterra kernels ν, # snapshots ζ

shift α
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CHAPTER 5

Numerical Experiments for a Power Network Test
Case

We now want to look at the results from the numerical testing1. This chapter is di-
vided into two parts. In the first section, we present the test setup and parameters. This
includes the choice of the power network test case, the ODE solver, the BT and POD
parameters and the evaluation metrics. In the second part, we analyze the results from
the numerical computations according to the selected metrics.

5.1 Test Setup and Parameters

Selection of Power Network System

The main test PN system is the IEEE case57 power flow system which is included in
the MATPOWER software toolbox [ZM16; ZMT11]. It consists of 57 nodes, thereof 7

generator nodes and 50 load nodes. We select this test case for two reasons: First, it is
the largest which is still computable2 for both the EN and SM model. Second, the ratio
of load nodes to generator nodes is high compared to other available test cases. Since
we reduce from the electric circuit representation of the power network, it is interesting
to see how the reduction methods perform for the two models, considering that the
number of oscillators is nco = 7 for the EN and nco = 57 for the SM model.

Figure 5.1 shows two illustrations of case57. In Figure 5.1a, made with the Python
toolbox pandapower3 [TSS+18], you can see the power flow solution of case57, where the
colors indicate the node voltage4 and the gray squared-in node is the reference generator
node. On the right, in Figure 5.1b, is a so-called one-line diagram of the test system
[GRA14]. The generators are consecutively numbered 1 − 7 and represented by the
voltage source symbol (the tilde within a circle). All other nodes and numbers depict

1You can find the functions and scripts which generated the data and figures as well as the data them-
selves in Appendix C

2As mentioned in Remark 3.35, forming the Kronecker product of the Volterra kernels, and the
quadratic product of H = H̃ and a factor of the Volterra kernel in Algorithm 3.2 results in large nonsparse
matrices which are computationally costly.

3The figure was generated by Dr. Manuel Baumann.
4Because these values are irrelevant to our analysis, we disregard them here.
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load nodes.

(a) pandapower (b) line diagram

Figure 5.1: IEEE case57 power flow system

For the construction of the coupled oscillator models, we use the MATLAB toolbox
pg_sync_models [NM15b] provided by [NM15a]. It supplies the model-dependent pa-
rameters Fi, Kij and γij as well as the model-independent network constants Ji, Di and
ϕR, which are necessary to solve the ODE system.

In Figure 5.2, you see the output-over-time plots for the FOMs of the EN and SM
models.
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(a) EN model
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Figure 5.2: Output of Full-Order Model for case57
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Standard Test Parameters5

We solve the ODE systemwith a Runge-Kutta-4 scheme using step size h = 0.001 as the
standard for the BT tests, and ode45 as the standard for the POD tests6.

The standard time interval is T = [0; 2], because the assumptions for the COmodels
are only valid for short time scales7 [NM15a]. To illustrate the convergence behavior of
the ROM output, we also look at a longer time interval of T = [0; 10].

The standard choice for the mathematical CO ODE system representation is the
quadratic system in matrix version (4.9).

We test two initial values, where δ0 ∈ {0, π}, and two output matrices: C1st , (4.15),
the output of the first oscillator’s phase angles, and Cam, (4.16), the arithmetic mean of
the phase angles. This makes four (δ0, C) testing pairs. The standard choice is (π, C1st).

Table 5.1 provides an overview of those tested parameters that are not influenced
by the choice of the CO model.

Table 5.1: Model-Independent MOR Parameters for case57

standard also tested

test case PN case57 –
# generators ng 7 –
# nodes n 57 –
ODE solver Runge-Kutta-4 ode45 for POD
time interval T [0; 2] [0; 10]

shift α 0.05 [0, 0.5] with step size 0.01

(δ0, C) (π, C1st) (π, Cam), (0, C1st), (0, Cam)

The start and step values of the reduction order nρ depend on the COmodel. There
is no standard choice for the latter parameter. Throughout the numerical experiments,
we vary nρ.

Concerning the BT-specific parameters, there are three main values which can be
modified: the number of Volterra kernels ν, and the α shift of matrix A, i.e., Aα. In some
instances, the method is tested with different numbers of Volterra kernels, ν ∈ {1, 3, 5},
with the standard choice of ν = 3. We abbreviate BTwith 1, 3 and 5Volterra kernelswith
BT1, BT3 and BT5, respectively. We examine α-shifts ranging between 0 and 0.05 with
a step size of 0.01, selecting α = 0.05 as the standard. As mentioned in Section 4.4, the

5When not otherwise mentioned, we tested with the parameters denoted as standard.
6When we started, we also used the Runge-Kutta-4 scheme for the POD tests. When during testing

some re-programming was necessary for the POD method, it was more convenient to switch to ode45.
Since the Runge-Kutta-4 scheme is just as accurate as the ode45 solver for the BT method, this has no
influence on the results.

7See, e.g., the assumptions for the classical model on Page 9.
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shift only affects the computation of the projection matrices. The actual ODEs system
is solved with the unshifted matrix Ã.

For our naive implementation of the POD method, there is only one adjustable pa-
rameter: the number of snapshots ζ. As discussed in Section 3.4, there is no rule what
size ζ should be in general. The goal is to use as few snapshots as possible but as many
as necessary8. Sample experiments showed that once a certain threshold of snapshots
is reached, increasing the number of snapshots does not improve the performance.

In Table 5.2 you can find the test parameters which depend on the the selected CO
model.

Table 5.2: Model-Dependent MOR Parameters for case57

EN model SM model

red. order nρ start 4 8
red. order nρ step 4 10
red. order nρ end 24 218
size FOM (4nco) 28 228
size 1st-ord. sys. nmin 14 114
# snapshots ζ 981 4333

Evaluation Measures

We examine three measures overall:

(i) output behavior y(t),

(ii) singular values σ,

(iii) L∞ error.

Considering the first item, this is simply an output-over-time plot. As we stated
in Remark 4.5, we used the nonzero transformed system (4.21) to solve the ROM as
well as the FOM. So, we plot ŷ(t) = Cx̂(t) + Cx0 and y(t) = Cx̃(t) + Cx0 for t ∈ T.
This direct comparison of the outputs for the FOM and ROM provides an intuition of
the approximation quality and helps to assess the L∞ approximation error, the third
evaluation measure.

8We employed the formula ζ = βn2
co + 1, where β = 20 for the ENmodel, and β = 4

3 for the SMmodel.
This model-dependent factor is doubled, if the POD should fail due to too few snapshots. The snapshot
factor β made it easier during programming to scale the number of snapshots ζ. Computing the time step
distances T

ζ , then starting to the build the snapshot matrix at t0 = 0 and ending at tζ = T adds 1 to the
number of snapshots
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Specifically, in Section 5.2, we look at the output-over-time for BT3 with time inter-
vals T = [0; 2] in Figure 5.3, and T = [0; 10] in Figure 5.4, as well as for PODwith a time
interval of T = [0; 10] in Figure 5.5.

Concerning the second measure, in Section 5.5, we look at the SVs of the Grami-
ans, the Hankel SVs (computed with Algorithm 3.3) in Figure 5.9, and the SVs of the
snapshot matrix X (computed with Algorithm 3.4). We actually examine the X -SVs’
behavior not only for the snapshot matrix of the quadratic system (4.9), but in addition
the SVs for the snapshot matrix of the 1st-order nonlinear system (4.3)9 in Figure 5.10.

In our evaluation, the SVs are normalized such that the largest SV is 1, i.e.,

σ̆ =
σ

||σ|| .

We evaluate two features by measuring the third item, the absolute L∞ error. First,
we examine the distance between the FOM output y(t) and the ROM output ŷ(t), that
is,

ε∞ = ||y(t)− ŷ(t)||L∞ = max
t∈T

|y(t)− ŷ(t)|, (5.1)

for which we use the MATLAB norm function. We look at this measure in our cross-
method comparison of the output error in Section 5.3, for the time interval T = [0; 2] in
Figure 5.6 and for the time interval T = [0; 10] in Figure 5.7. We also evaluate the mea-
sure for BT3 when we compare the combinations of different initial values and output
matrices in Section 5.6 in Figure 5.11. It is used, too, to investigate the influence of the α

shift value in Section 5.7, again for BT3 in Figure 5.12.

Second, we also look at the L∞ error of the PTI, i.e., we check if

s2(t) + c2(t) = 1,

holds, where s, c ∈ R4nco are the sine and cosine components (4.10) of the pulled back
and back-transformed state vector x = Vα x̂ + x0 as described at the end of Section 4.4
on Page 61. Using MATLAB’s max function, we first compute

ε./∞ = ||(s2(t) + c2(t))− 1||L∞ = max
t∈T

((s2(t) + c2(t))− 1), (5.2)

which gives us an absolute L∞ error estimate for each oscillator. If ε./∞ > 103, the error
is considered to be ε./∞ = ∞. We then select the best and worst performing oscillator
based on the mean ε./∞ value across reduction orders nρ. If there are Inf or NaN values,
we set them to 107, but only for the computation of the mean, such that if there are Inf
or NaN values, you can “spot” them by their absence in the plots without distorting the

9The unlifted system is only half as large as the quadratic system. However, because this system lacks
structure, the nonlinear terms must be estimated by other techniques, termed “hyper-reduction”. This
provokes a second approximation of the system and can become costly, depending on the degree of non-
linearity in the system. As [KW19] note, the lifted system representation is not unique but exact, i.e., there
is no extra approximation necessary. POD can be directly applied to the lifted system and exploit the added
structure.
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curve. We choose the two oscillators per MOR method with maximum and minimum
mean. Investigating the PTI is another means to evaluate the quality of the MOR. An
advantage is the identity’s independence of the choice of the outputmatrix. We examine
this measure in Section 5.4 for BT1, BT3, BT5 and POD in Figure 5.8.

To improve interpretability, all SVs σ̆ and both L∞ errors, ε∞ and ε./∞ , are plotted on
a logarithmic scale.

Before we evaluate the test results, we need to keep two things in mind: First, we
quadruple the size of the CO models by lifting them to quadratic form. However, since
we want to solve the ODE system by numerical software, we would have to double
the original size of nco anyway to transform the 2nd-order ODE systems of size nco to a
1st-order ODE systems. We therefore define

nmin = 2nco, with nEN
min = 14, and nSM

min = 114, (5.3)

the minimum size of the system such that it can be solved by numerical software. Sec-
ond, we simultaneously want a low reduction order nρ and a small L∞ error. Relating
this to the first reminder, we may consider a MOR a success, if we have an acceptable
L∞ error and nρ < nmin is valid for the associated reduction order.

Furthermore, we point out that the balancing and truncating parts of BT in principle
worked in all tests10. When we declare that a BT method “failed” or did “not work”
or the like in the following sections, we do not mean that the method itself could not
be performed, but that the subsequent solution of the ODE system based on the BT
reduction failed to produce a computable error, i.e., an error that did not result in Inf or
NaN. The only exception is the examination of the α-shift influence, which we discuss
in Section 5.7.

In our analysis of the evaluation items, we always start by examining Balanced Trun-
cation (and its versions, where applicable), first for the EN, second for the SM model,
then we make a cross-model comparison, and eventually contrast the findings with the
performance of Proper Orthogonal Decomposition (POD).

5.2 Proof-of-Concept: Output-over-Time Behavior

We begin our evaluation by examining the output-over-time for different reduction or-
ders nρ in Figures 5.3 and 5.4 for BT3, and Figure 5.5 for POD.

EN Model: We see in Figure 5.3a that the output for the first three reduction or-
der values nρ ∈ {4, 8, 12} diverges from the FOM output already in the 2 seconds in-
terval. As we move to the 10 seconds interval in Figure 5.4a, we omit these reduction

10However, whenever the Cholesky factors of the Volterra kernels and/or Gramians were computed
with Algorithm 3.2 (and Algorithm C.1), it was almost always necessary to approximate the respective
matrix with an symmetric positive definite (SPD) matrix (see Appendix C).
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Figure 5.3: Output of BT3
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Figure 5.4: Output of BT3 for 10s Interval
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orders and in addition nρ = 16 to avoid distortion. For almost 3 seconds, the output for
the remaining orders stays relatively close to the FOM output. Nonetheless, after that
time instance, the output of the EN model for the remaining two reduction orders also
branches out.

SM Model: The SM model in Figure 5.3b looks a little more promising. A higher
proportion of reduction orders seems to produce output which stays within a short
distance of the FOM output. However, some of the lower reduction orders generated
interesting output behavior. The output for nρ = 8 looks linear. The lines relating to
nρ ∈ {18, 28, 38, 48, 58} demonstrate an almost inverse development between 0.6 and 1.4

seconds, after staying close to the FOM output for the first 0.3 seconds. The latter is also
true for the output line of nρ = 68. Subsequently, it mimics an upwards shifted FOM
output.

Analogously to the EN model, we eliminate these worst reduction orders to get a
clearer picture in Figure 5.4b. After the omission only the outputs relating to nρ > 68

are left. In the first 3 seconds the output for these orders keep close to the FOM output;
except the output for nρ = 68, which retains its shifted progression during this time.
Until the end of the 10 seconds interval, however, output for nρ = 68 diverges almost as
much as the one for nρ = 78. In contrast, the output for nρ = 88 seems to approximate
the FOM well, while the output related to nρ ∈ {98, 108, 118, 128, 138, 148, 158, 168} de-
viates noticeably. This leaves only output produced by reduction orders nρ > 178within
imperceptible distance of the FOM output.

ENvs. SMModel: FromFigure 5.3, we discern that BT3 does not accomplish a good
approximation of the FOM for low- to mid-range reduction orders regarding both CO
models. In the standard time interval of 2 seconds, the EN model output only stayed
close to the FOM for reductions orders nρ > 16 > nEN

min = 14. The reduction perfor-
mance of SM is better, considering nSM

min = 114 in the same interval. The four output
lines relating to reduction orders between 78 6 nρ 6 108 satisfy nρ 6 nSM

min = 114 and
seem to progress near the FOM output.

We compare the observations concerning the output with the L∞ output error in
Section 5.3, before we draw more conclusions on the performance of BT3.

BT3 vs. POD: We focus immediately on the plot with a time interval of T = [0; 10]

in Figure 5.5 and compare the findings thus far to the output approximations achieved
by POD. Evidently, this MORmethod’s output aligns with the FOM output already for
reduction orders of nρ > 12 for the EN model in Figure 5.5a, with nρ = 8 also seeming
within reasonable distance. POD performs even better for the SMmodel in Figure 5.5b.
Merely for nρ = 8, the reduced output oscillates with larger distance around the actual
output values. All other reduction orders seem to immediately align with the full-order
output11. So, judging by the output behavior, the POD performance is more accurate

11One aspect to point out is that the produced output for nρ = 8 does not start at ŷ(0) = π which
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Figure 5.5: Output of POD for 10s Interval
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Figure 5.6: L∞ Output Error for BT1, BT3, BT5, and POD

also for small nρ than BT3’s.

5.3 Cross-Method-Comparison of Output Error

We consider the L∞ output error as defined in equation (5.1) on a logarithmic scale.
Before we return to the structured analysis, we first use this cross-method compari-

son to explain the standard choice of BT3with the help of Figures 5.6 and 5.7. By looking
at the plots, ν = 3 is the only Volterra kernel number which produces a measurable L∞

output error for all tested reduction orders for both CO models in the 2 seconds inter-
val. Estimating the output error fails entirely for the SMODE system based on the linear
BT1, and also the quadratic version with ν = 5 fails for nρ = 8, see Figure 5.6b. The
situation looks similar for the EN model in Figure 5.6a, although the output from BT1
can bemeasured for nρ ∈ {8, 12, 24}. The number of noncomputable gaps in the graphs
increase for the larger time interval in Figure 5.7. Curiously, the gaps do not only turn
up for all nρ below a certain threshold, but also appear in between two (mid-range)
working reduction orders, e.g, between nρ = 78 and nρ = 128 in Figure 5.7b for BT5 in
the SM model. In consequence of these findings, we choose the quadratic BT3 method
as the most reliable BT option.

EN Model: In Figures 5.6a and 5.7a, we see that BT1 produced measurable errors
only for nρ ∈ {8, 12, 24}. The error is between 100 and 10−1, independent of nρ and the
time interval. Surprisingly, for nρ ∈ {8, 12}, the linear BT is better than the quadratic
BT versions in both time intervals.

While errors could be computed from the application of BT3 in the 2 seconds inter-

pertains both COmodels. We tried to remedy this by concatenating the initial state vector with the projec-
tion matrix and then performing a QR decomposition to restore orthogonality. As this had no effect, we
omitted the procedure afterwards since the value is less than 0.01 off.
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Figure 5.7: L∞ Output Error for BT1, BT3, BT5, and POD for 10s Interval

val, it failed for nρ ∈ {4, 8} in the longer time frame. Also, except for nρ ∈ {20, 24} in
the 2 seconds interval, the error is poor with values barely below 10−1 or higher. In-
terestingly, in both time intervals, the error does not vary a lot between nρ = 20 and
nρ = 24.

Considering BT5, only one error value could be calculated in the 10 seconds interval
for the high reduction order nρ = 24. In the shorter time frame, BT5 was more reliable,
but the error curve is shallow, and again, merely for nρ = 24 an L∞ error of about 10−2

could be computed.

Fixing the reduction order, every BT version produces larger L∞ errors in the longer
time interval.

SM Model: The last statement is also true for the SM model - disregarding that
BT1 does not work at all for this model, as we can see in Figure 5.6b and Figure 5.7b.
BT3 generates a lower L∞ error (or at least does not fail) than BT5 for lower reduction
orders; its curve meets BT5’s first at nρ = 128 in the 2 seconds interval, and in like
manner, between reduction order 138 and 148 in the 10 seconds interval. Whereas BT5
achieves continuously better results than BT3 for T = [0; 2] after their error curvesmeet,
the latter intermediately prevails for nρ ∈ {178, 188} in the 10 seconds interval. Staying
in this time interval, the error curve of BT5 starts at nρ = 8 below BT3’s and produces
output until nρ = 78. This almost exactly covers the reduction orders for which BT3
fails, i.e., nρ ∈ {38, 48, 58}.

In the 2 seconds time interval, the L∞ error based on BT3 noticeably remains almost
constant for 18 6 nρ 6 58, again for 68 6 nρ 6 168, and once more for 188 6 nρ 6 208

with errors of about 10−1, just above 10−2, and barely above 10−4, respectively. Regard-
ing BT5, we see output error stagnation at a value of just above 10−1 for 18 6 nρ 6 118

in the same interval. BT3’s error curve repeats this steadiness for 68 6 nρ 6 168 in the
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10 seconds time frame with error values a little larger than in the shorter time interval.

EN vs. SMModel: With BT3 and BT5, the reduction accomplishes lower L∞ errors
in the SM model than in the EN model. Even though BT1 worked for some reduc-
tion orders in the latter model, the error is so large that the application of this linear
version still seems pointless. Taking only the reduction orders into account for which
nρ 6 nSM

min = 114 holds, at least BT3 produces acceptable results in both time frames for
the SM model assuming an L∞ output error of just above 10−2 is tolerable.

Output-over-Time vs. Output Error regarding BT3: We interpret the findings of
Section 5.2 concerning the output-over-time plots based on the application of BT3 in
Figures 5.3 and 5.4 with regard to what we have learned from the L∞ error plots in
Figures 5.6 and 5.7.

Considering the EN model first, the blue L∞ error curves confirm the diverging be-
havior for nρ ∈ {4, 8, 12} in Figure 5.3awith an L∞ error above or close to 1 in Figure 5.6a
for the 2 seconds time interval. For the two smallest reduction orders regarding the
longer time interval, BT3-based ODE solutions failed completely to compute an error
< ∞ in Figure 5.7a. The outputs for nρ ∈ {16, 20, 24} look close to the FOM one and
the error curves with values below 10−1 for nρ = 16 and 10−3 for the higher reduction
orders support this for the 2 seconds time interval. The L∞ error value of well above
101 for nρ = 16 in the 10 seconds time interval also attests that this reduction order
was rightfully omitted in the longer output-over-time plot to prevent distortions. The
errors corresponding to nρ ∈ {20, 24} in the longer time intervals likewise corroborate
the growing deviation of the respective output curves with values approximating 10−1.

The findings for the output-over-time plots match those for the L∞ error concerning
the SM model, too. Considering the 2 seconds time interval in Figure 5.6b, the error
for nρ = 8 borders on 1 and the corresponding output “curve’s” straight progression
matches this large error in Figure 5.3b. We identified three sets of reduction orders
for which the L∞ output error stagnated in the same time interval. The first set with
reduction orders between 18 and 58 result in an L∞ error of about 10−1. Comparing this
with the output-over-time, we see their behavior differs a lot from the FOM curve. For
68 6 nρ 6 168 the error remains almost stationary just above 10−2. This agrees with the
output-over-time plot in Figure 5.3b, in which corresponding lines are close together.
Reduction order nρ = 68 produces the aforementioned slightly upwards shifted curve,
reflecting the comparatively slightly larger output error. The lines corresponding to
the third set of stagnating reduction orders, 188 6 nρ 6 208 can hardly be told apart
from the FOM output mirroring the small output error of approximately 10−4. The
large error values for the first three reduction orders of above 100 and the altogether
missing error values in the 10 seconds time frame match the deleted output-over-time
lines in Figure 5.4b. The stagnating output error curve corresponding to 68 6 nρ 6 168

agrees with the slowly growing distance between the related output-over-time lines
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Figure 5.8: L∞ PTI Error for BT1, BT3, BT5, and POD

and the FOM line. The increase is a little faster for nρ ∈ {68, 78, 98}, reflecting their
slightly larger L∞ error. A surprise is the absolute minimum error value of about 10−4

for nρ = 188.
In Figure 5.4, we could already see the progressing divergence of the output-over-

time lines, especially for the EN model. This indication that reduction by BT3 might be
useful for short time intervals, but grows more unreliable with time, is substantiated
by the L∞ output error. In both CO models, the error is either high or not computable
for low reduction orders. For mid-range to high reduction orders, we observe the error
grows larger in time. Comparing the output error in the 2 seconds intervalwith the error
in the 10 seconds interval for fixed nρ value, we notice a greater difference between the
errors in the EN than in the SM model.

BT vs. POD: Regardless of CO model and time frame, POD always outperforms
the BT approaches. Its green error curves have a much steeper development, especially
for the SM model, the method achieves much lower errors, and works for all reduction
error in all time intervals. These findings coincide with the findings in Section 5.2.

5.4 Cross-Method-Comparison of Pythagorean Trigonometric
Identity Error

In Figure 5.8, we look at the L∞ PTI errors of the best and worst oscillators as derived in
Section 5.1 on Page 67 and the error defined there in equation (5.2). We also examine
how this error compares with L∞ output error of the respective model and MOR ap-
proach. Note, that we only consider the standard time interval of T = [0; 2] from now
on.
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EN Model: First addressing BT1 in Figure 5.8a, determining the L∞ PTI error was
not successful. Theworst oscillator offers only twousable errors for the reduction orders
of 8, 12 with a large value of above 10. They are higher than the respective L∞ output
errors in Figure 5.6a. There is also only a single error with a value just below 10−1, at
nρ = 24, belonging to the best oscillator. It is, however, smaller than the corresponding
L∞ output error. BT1 performs worst of the tested MOR methods.

Next considering BT3, this is a good illustration that small differences in values can
appear large on a logarithmic scale. We observe that the curves of the best and worst
oscillator are nearly identical for the lowest three reduction orders, nρ ∈ {4, 8, 12}, and
within short distance for the next two, nρ ∈ {16, 20}. That the worst oscillator’s error
curve does not only steeply decrease in contrast to the best oscillator’s curve for nρ = 24,
but it also undercuts the L∞ output error for the same reduction order. In general, how-
ever, the L∞ PTI error of both curves is worse than the L∞ output error.

Looking at BT5, its curves of the L∞ PTI error show a more shallow progression
compared to BT3. Nevertheless, the error values are about the same or even lower than
BT3’s – exempting the missing values for nρ = 4 (best and worst), and nρ ∈ {20, 24}
(best only). We observe that BT5’s worst and best oscillator error curves are very close
for nρ ∈ {8, 12, 16} with error values falling from around 10−1 to 10−3 for the best and
from 10−1 to 10−2 for the worst oscillator. With this reduction order set, the L∞ PTI
errors are smaller than the L∞ output errors. There are no best values for the two re-
maining reduction orders, but the L∞ PTI error values belonging to the worst oscillator
remain between 10−1 and 10−2, with the one corresponding to nρ = 20 smaller and the
one corresponding to nρ = 24 larger than the respective L∞ output error.

SM Model: In Figure 5.8b, we notice that BT1 again does not work at all for this
model.

At just about every point, the BT3’s worst L∞ PTI error curve is above the L∞ output
error curve. With the few exceptions of nρ = 8 and nρ > 188, this line almost mimics
the L∞ output error curve in Figure 5.6b with a slight upwards shift. We recognize two
of the stationary segments, 18 6 nρ 6 58 and 68 6 nρ 6 168, before a rapid decrease
in error. Even the minimum at nρ = 188 exists. With an error value of about 10−6, it is
much lower than its output error counterpart. The L∞ PTI error curve created by the
best oscillator remains close to the worst one until nρ = 68 and then rapidly falls off,
before likewise steadying for 98 6 nρ 6 158 with error values between 10−5 and 10−4.
Following a slow decrease in error, this curve reaches its minimum at nρ = 188, too.
Afterwards, it approximates the line belonging to the worst oscillator.

While BT5 only failed for nρ = 8 concerning the L∞ output error in Figure 5.6b, the
L∞ PTI curves have gaps for higher reduction orders. Considering the purple curve of
the worst oscillator, its L∞ PTI errors are much larger than the corresponding L∞ output
errors until the first break in the curve. Yet, after the break, the L∞ PTI error values are
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much lower compared to the respective L∞ output errors. They are also better than
the best oscillator’s values. Except for the break, the best oscillator’s PTI performance,
however, offers error values well below those of the related parts of the L∞ output error
curve.

EN vs. SM Model: In parallel to the L∞ output error, the EN model admits L∞ PTI
error values computedwith BT1 in contrast to the SMmodel, but they are still scarce and
large. The reduction by BT3 and BT5 in the SM model results in smaller L∞ PTI errors
for the best oscillators, too, compared to the other COmodel. Their best andworst error
curves have a greater distance than in the ENmodel, especially for mid-range reduction
orders.

Again, solely allowing for reduction orders with nρ 6 nEN
min = 14 for the EN model,

and nρ 6 nSM
min = 114 for the SM model, respectively, BT5 alone might be considered to

provide a tolerable L∞ PTI error with values between 10−1 and 10−2 for both best and
worst oscillator. Regarding the SM model, only the best oscillators’ error curves have
smaller error values than 10−1. BT5’s best oscillator curve satisfies this error threshold
for all reduction orders 18 6 nρ 6 108 6 nSM

min = 114, while BT3’s error values comply
within the range 78 6 nρ 6 108 6 nSM

min = 114

BT vs. POD:Once again, POD outperforms BT. For most of the reduction orders in
both CO models, there is a huge distance between the L∞ PTI errors produced by the
MOR reduction and the BT approaches. In addition, all of POD errors are small, even
for nρ = 4 in the ENmodel, and nρ = 8 for the SMmodel, the values are comparatively
low.

5.5 Evolution of the Singular Values

In this section, we first look at the BT3-related SVs in Figure 5.9. We then compare
the SVs of POD’s snapshot matrices for the lifted quadratic system (4.9) and the trans-
formed 1st-order ODE system (4.3) in Figure 5.10. Afterwards, we contrast BT3 and
POD.

EN vs. SM Model: As characterized in Definition 3.22 and stipulated in Lemma
3.23, the Hankel SVs and the SVs of the reachability and observability Gramians, P
and Q, should be equal in a (principal-axis) balanced system. Figure 5.9 depicts that
this does not hold for both CO models in our case. In contrast, the three SV curves
in each plot show a pronounced difference. A common trait is the sharp decrease for
the first SVs, and the subsequent preliminary stagnation. This first stationary segment
(although on different levels for the different SV types) sets in before our first tested
reduction order value nρ = 4 for EN, and nρ = 8 for SM model. So, testing even lower
orders would probably not have been successful.

Focusing on theHankel SV curve, we observe that the first stagnation ends at around
the 12th Hankel SV in the EN model, and shortly before the 68th Hankel SV in the SM
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Figure 5.9: Hankel SVs, and SVs of Gramians P ,Q

model. The former CO model has two additional stationary phases between the 16th

and 20th, and the 21st and 26th Hankel SV. The SM model has only one additional stag-
nant segment starting around the 68th and ending at circa the 158th Hankel SV. The
remainder of the Hankel SV curve slowly decreases until Hankel SV 218, and then falls
of sharply. If we highlighted the Hankel SV numbers which are also in our set of tested
reduction orders, the evolution of the Hankel SVs mimics the progress of the L∞ out-
put error in Figure 5.6 for both CO models. Especially, the L∞ output error stagnation
intervals for the SM model are retraceable.

Taking also the SVs of the Gramians into consideration, we see that for the most
part, the Hankel SVs are larger than or equal to the SVs of the Gramians and they do not
decrease as much. Whereas the SV curves of the Gramians cross several times in the EN
model, the line belonging to the observability Gramian is always above the reachability
one in the SM model. In general, the SVs in the EN model are smaller compared to the
other model.

Lifted vs. Unlifted ODE System: Figure 5.10 depicts the decline of the SVs of the
snapshot matrices for the lifted quadratic ODE system (4.9) and the unlifted 1st-order
nonlinear ODE system (4.3). The two respective curves in the EN and SM model plots
fall off fast, even more so for first SVs in the latter model. The lines are actually aligned
for the prime 10 SVs, and the 25 SVs, respectively. After that, the curves belonging
to the unlifted system accelerates its decrease. Nonetheless, the SVs belonging to the
lifted quadratic system decay rapidly, too. This implies that the projection matrices
computed from the SVD of the unlifted and lifted snapshot matrix, respectively, span
the same or at least a very similar low-dimensional subspace in which the state vector
can be approximated. So, POD does not suffer from the system lifting.

We can also spot the parallel progression of the quadratic system’s snapshot SV
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Figure 5.10: Singular Values of POD Snapshot Matrices for Lifted Quadratic and Un-
lifted Nonlinear System

curve and the L∞ output error as well as the L∞ PTI error curves in Figure 5.6 and
Figure 5.8, respectively.

BT3 vs. POD: Focusing on the X -SVs of the quadratic system, we see that their de-
scent ismuchmore rapid and lower compared to the fall-off of the BT3-related SVs. This
explains the better performance of POD across reduction orders, CO models, and time
frames. Especially juxtaposing the Hankel SVs with the X -SVs illustrates the former’s
comparatively shallow decrease

5.6 Influence of Initial Value &OutputMatrix on Output Error

In Figure 5.11, we inspect the L∞ output error for four combinations, i.e., four pairs
(δ0, C) of two initial values and two output matrices as mentioned in Section 5.1 and
summarized in Table 5.1 on Page 65.

EN Model: For nρ = 4, the BT reduction does not work at all for the pair (0, C1st),
but the L∞ output errors for the other combinations are comparatively close. The pair
(0, C1st) negatively diverges, and the pair (0, C1st) starts with a large error value of 102

at nρ = 8, while having a very similar (large) error. The error curves of all pairs are
almost aligned for reduction orders nρ > 12.

SM Model: Regarding the SM model, two features stand out: First, both pairs in-
cluding output matrix Cam almost always perform better than the other two. Second,
there is almost no improvement in the output error in the reduction order sets we iden-
tified in Section 5.3 for all combinations.

EN vs. SM Model: Although the curves develop a little erratically for nρ < 12 in
the EN model, and the two curves relating to the (δ0, Cam) pairs have a negative shift,
the L∞ output error behavior is very similar in both COmodels in general. Considering
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Figure 5.11: L∞ Output Error for (δ0, C) pairs of Initial Values and Output Matrices

our previous findings, this supports the assertion that the evolution of the Hankel SVs
is more important to the BT reduction result than the decision on a particular initial
value or output matrix.

We chose the pair (π, C1st) as standard, because the output of one oscillator is easier
to interprete than the average of all, and we wanted an initial value that is also nonzero
for the 1st-order ODE system.

5.7 Influence of α-Shift on Output Error

In this section, we examine to what extent the choice of the α-shift to makematrix Ã sta-
ble affects the L∞ output error performance of BT. To that end, we examine the heatmaps
in Figure 5.12, depicting the error value on a color scale for α values between 0 and 0.5

with a step size of 0.01 and the usual reduction orders.
EN Model: For α = 0, BT3 itself does not work. Without a shift, Ã violated the

requirement for a stable matrix in Definition 3.14, and therefore the assumption for a
stable system in Theorem 3.15, that all its EVs must be in the left half of the complex
plane. In consequence, neither the Lyapunov-Cholesky routine in Algorithm 3.1 nor
the Gramians in Algorithm 3.2 and Algorithm C.1 could be computed.

This was not the reason for the other white cells in the heatmap for reduction orders
nρ = 8 and especially nρ = 4. Here, the error computation resulted in NaN.

An evident finding is that for high reduction orders nρ ∈ {20, 24}, all tested α values
resulted in output errors of 10−2.5 or smaller. In contrast, discovering a pattern between
α value and output error for the other reduction orders is more difficult. There is no
nρ for which the output error progresses downwards on the color scale along with in-
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Figure 5.12: Impact of Different Aα on L∞ Output Error

creasing alpha, or vice versa. There are also merely a few α values for which the output
error improves with increasing the reduction order. Order nρ = 16 is especially inter-
esting, because it is more sensitive to the shift values than reduction orders nρ = 8 and
nρ = 12. It results in worse L∞ output errors for many of the α values compared to the
lower reduction orders. It actually works best with α = 0.01, a value which produces
the worst error for nρ = 12. Disregarding the two highest and the lowest reduction
orders nρ ∈ {4, 20, 24}, nρ = 12 shows the most coherent behavior, moving from red
to light blue with increasing α. But here, too, there are output error values disturbing
the color flow, e.g., for α = 0.05. These anomalies occur for all reduction orders with
different frequency, quantity, and significance.

SM Model: Shifting Ã is likewise absolutely necessary to perform the balancing
part of BT3 concerning this model, for the same reason and reasoning as above. In
contrast to the other CO model, L∞ output errors can be computed for all other shift
and reduction order values.

The error progression appears a little more comprehensible. While for this CO
model, too, color distribution follows no stringent pattern, moving from left to right
along reduction orders, there is a general tendency to encounter lower output errors.
Going from top to bottom along α values, however, it is harder to spot a pattern. For
reduction orders nρ > 68, very low α shifts work better than larger ones, especially
for nρ > 178, where the output error seems to be inversely proportional to the shift
value. It looks as if the exact shift value does not significantly affect the output error for
78 6 nρ 6 198 after passing a certain α threshold. In between 128 6 nρ 6 198, there
is a second threshold as we can see a yellow area squeezed in between very small and
mid-range α values.

For lower reduction orders nρ 6 58, the L∞ output error is for the most part worse,
and the error pattern is also more inconsistent than for higher orders. Both findings can
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be inferred from the color distribution.
EN vs. SM Model: Both models need a minimum α shift to make BT work. They

also have in common that for a number of reduction orders, very small shifts produce
better results than larger ones. An interpretation is that, depending on the system size
and the reduction order, on the one hand, α must be large enough to make Ã stable,
and on the other hand, it must not be too large such that the matrix is not shifted too
far from the original.

However, this does not explain the unclear relation between the value of α and the
L∞ output error, which ismore pronounced in the ENmodel. Tomake out somepattern,
we have to factor in the reduction order. This indicates that the success of BT3 depends
more on the reduction order than on the shift.

Due to this arbitrary behavior of the shift, we picked the standard value of α = 0.05

for the numerical experiments, reasoning that it was large enough tomake Ã stable, but
small enough to keep it close to the original.
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CHAPTER 6

Summary and Conclusion

The main contribution of this thesis is the application and examination of an only re-
cently proposed MOR method – Balanced Truncation adapted from the linear to the
quadratic(-bilinear) case – to a problem of practical, real-world importance – the solu-
tion of a nonlinear ODE system which models PN dynamics.

We used quadratic lifting of the system, an approach lacking research especially in
the context of MOR. We contributed implementations of the PN ODEmodels given the
model-dependent parameters, such that they can be solved viaMATLAB. This includes
the transformed lifted quadraticmatrix ODE representation towhich quadratic BT (and
POD) can be applied. We derived and implemented the adapted quadratic version of
BT. Its performance was examined by testing the influence of specific, selectable reduc-
tion parameters, like the reduction order or the stabilizing shift, and pitched it against
the well-established POD method.

From these numerical experiments, we draw these main conclusions and propose
some conjectures from our analysis of the CO model MOR by BT:

The application of BT1, i.e., linear BT, to a quadratic system does not give good ap-
proximations. While this is probably foreseeable, it might come as a surprise that BT5
overall does not perform as good and is not as reliable as BT3, especially for lower reduc-
tion orders. Considering that the computation of the Volterra kernels is very costly, it is
valuable to know that adding more kernels does not necessarily help the performance.

The output from the reduced solutions grows unstable for longer time intervals; the
magnitude of divergence seems to depend on the underlying CO model or the system
size. The output divergence and error is greater for the smaller EN model than for
the SM model in any case. Since some of the necessary assumptions to derive the CO
models’ parameters are only valid for short time periods, anyway, this might not be an
issue in the reduction of power networks.

In general, the reduction worked better for the latter CO model. This raises the
question whether BT is better suited for larger systems, or whether the CO model rep-
resentation is the crucial factor. It would be interesting to represent other power flow
cases as EN and SM models in quadratic structure, and study if the reduction by BT
reproduces the findings in a cross-CO-model-test-case comparison. The implemented
functions and scripts are ready to test different, small power flow cases. The code to
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determine the Gramians could also be optimized to study larger systems, e.g., by par-
allelization of the bottle-neck Kronecker product, or better memory allocation.

Experiments with varying initial value, output matrix, and shift indicate that the
reduction performance depends more on the reduction order and Hankel SV evolution
than on the specific values of x0, C and α. At all events, the decrease of the Hankel SVs
provides the most reliable measure to predict how successful the BT reduction will be.
The comparison of output error andHankel SVs also reveals the link between these SVs
and the reduction order.

Overall, the reduction performance of BT is not very satisfactory. This is especially
evident whenever we measure it against POD. However, POD has the disadvantage of
depending on a fixed input and the snapshot instances. So, BT might have its advan-
tages here, because once the projection matrices are computed, we can just reuse them.
Testing modified static or time-dependent inputs would give some insights.

In conclusion, it is too soon for a final verdict on quadratic Balanced Truncation. This
thesis provides some preliminary results and lays the ground for further experiments.
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APPENDIX A

More on Gramians, Stability and Energy Functionals
for Balanced Truncation

A.1 Linear Reachability and Observability Concepts

We consider the system Σ =

(
A B

)
with A ∈ Rn×n, B ∈ Rn×m.

Theorem A.1 (Reachability properties, [Ant05]).

(1) The reachability space Xreach ⊆ X is a linear space. It holds

Xreach = im(R(A, B)).

(2) AXreach ⊆ Xreach, i.e., the reachable subspace is A-invariant.

(3) Σ is (completely) reachable if and only if rank(R(A, B)) = n.

(4) Reachability is independent of the system basis.

PropositionA.2 (Relation of ReachabilityMatrix andGramian, [Ant05]). For all times
t > 0, the column space of the reachability Gramian generates the whole reachability subspace,
i.e.,

im(P(t)) = im(R(A, B)).

With respect to the observability concept, we consider the system Σ =

(
A

C

)
with

A ∈ Rn×n, C ∈ Rp×n.

Theorem A.3 (Observability properties, [Ant05]).

(1) The unobservability subspace Xunobs ⊆ X is a linear space. It holds

Xunobs = ker(O(C, A)) = {x ∈ X |CAi−1x = 0, i > 0}.

(2) AXunobs ⊆ Xunobs, i.e., the unobservable subspace is A-invariant.

(3) Σ is (completely) observable if and only if rank(O(C, A)) = n.

(4) Observability is independent of the system basis.
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Proposition A.4 (Relation of Observability Matrix and Gramian, [Ant05]). For all
times t > 0, it holds

ker(Q(t)) = ker(O(C, A)). (A.1)

Employing the duality principle in linear systems, we can show a link between the
reachable subspace of a system Σ and the unobservable subspace of its dual system Σ∗.

To that end, we now consider the system (3.3), Σ =

(
A B

C

)
, and define its dual system

as

Σ∗ =

(
−A∗ −C∗

B∗

)
∈ R(n+m)×(n+p),

with A∗, B∗ and C∗ being the respective dual maps of A, B and C. Their corresponding
matrix representations are the complex transposed matrices A, B and C. The dual sys-
tem switches the parts of input and output variables, i.e., −C∗ determines the input, B∗

the output and−A∗ the dynamics of the system. The dual system Σ∗ is also the adjoint
of Σ with respect to the usual inner product L2(R).

Theorem A.5 (Duality Principle, [Ant05]). It holds:

(Xreach
Σ )⊥ = Xunobs

Σ∗ .

The system Σ is reachable if and only if its dual Σ∗ is observable.

A.2 Stability

In this section, we consider the autonomous system

ẋ(t) = Ax(t). (A.2)

We present additional definitions and properties concerning stability in order to
provide further information on energy functionals below in Appendices A.3 and A.4.

Definition A.6 (Equilibrium point, [Lue79]). We say x̄ is an equilibrium point of system
(A.2) if Ax̄(t) = 0 for all t > t0. In other words, after the state vector has reached the
point x̄, it will stay in that position for all time.

DefinitionA.7 ((Asymptotically) Stable EquilibriumPoint, [Lue79]). LetKx̄,R be the
ball of radius R with equilibrium point x̄ at its center.

(i) An equilibrium point x̄ is called stable if for every R > 0 there is an 0 < r < R

such that if x(0) ∈ Kx̄,r then x(t) ∈ Kx̄,R for all t > 0.

(ii) An equilibrium point x̄ is called asymptotically stable if in addition to being stable
there is an R̄ > 0 such that if x(0) ∈ Kx̄,R̄ then x(t) → x̄ for t → ∞.

Aside from the matrix-based system stability in Theorem 3.15, there is also the so-
called Lyapunov-based stability, based on a special kind of scalar functions:
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Definition A.8 (Lyapunov Functions, [BG17; Lue79]). A Lyapunov function over a ball
K0,r is a continuous function F : Rn → R with continuous first partial derivatives if it
holds

(i) F (0) = 0 and F (x) > 0 for x ∈ K0,r \ {0},

(ii) d
dtF (x) 6 0 for all x ∈ K0,r.

The first condition attests that, withinK0,r, the functionF (x) is positive definite and
has a unique minimum at x = 0; the second condition means that the gradient of the
function is negative semidefinite and ensures that the function values are nonincreasing
along all state trajectories within the ball.

Theorem A.9 (Lyapunov Function Stability, [BG17; Lue79]). If there exists a Lyapunov
function over a ballK0,r, then x̄ = 0 is a stable equilibrium point. If the gradient of the Lyapunov
function is negative definite for every state vector in K0,r \ {0}, then x̄ = 0 is an asymptotically
stable equilibrium point.

Usually, it is challenging to construct a Lyapunov function, especially for general
nonlinear systems [Lue79], but under linear, autonomous conditions as in system (A.2),
we have the well-established quadratic function at our disposal [Ant05]:

F (x) = x∗Px, P = P∗ ∈ Rn×n,

and differentiate the equation to see which properties the function terms must have to
meet the conditions of Definition A.8:

d
dt
F (x) = ẋ∗Px + x∗Pẋ

= x∗A∗Px + x∗PAx

= x∗ (A∗P + PA)︸ ︷︷ ︸
=Z

x

= x∗Zx.

So, to find a suitable P, we need to solve the quadratic Lyapunov function

A∗P + PA = Z. (A.3)

The following theorem establishes the necessary properties of A and Z to ensure the
existence of a unique solution P and the desired system stability behavior.

Theorem A.10 (Lyapunov Equation Stability for Linear Systems, [Ant05]).

(1) If A is stable, then there exists a unique solution P ∈ Rn×n of (A.3) for all Z ∈ Rn×n.

(2) If Z = Z∗, then also P = P∗.

(3) If Z is negative semidefinite and the pair (A, Z) is observable, then P is positive definite.
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(4) If Z is negative semidefinite and P is positive definite and in addition Z and P satisfy (A.3),
then the system (A.2) is stable.

(5) If (4) holds and furthermore (A, Z) is observable, then the system (A.2) is asymptotically
stable.

Considering quadratic systems, the previously givenDefinitionsA.6 andA.8 remain
valid except that we replace the linear autonomous system (A.2) with the quadratic
autonomous system

ẋ(t) = Ax(t) + H
(
x(t)⊗ x(t)

)
, (A.4)

where x̄ = 0 is a stable equilibrium point [BG17].
The Lyapunov method of determining stability is so powerful that we can apply

it to the nonlinear case as well. Even though the analysis of equilibrium points and
the construction of Lyapunov functions is more difficult for nonlinear systems, [BG17]
provide the following results (adapted by us for the quadratic case):

Theorem A.11 (Lyapunov Function Stability for Quadratic Systems, [BG17]). Con-
sider the quadratic system (3.38) and let A be stable. Furthermore, let the reduced-order system
(3.40) be obtained by performing Algorithm 3.3, where low-rank approximations of the trun-
cated Gramians are determined by an iterative scheme. Let P1 and Q1 be the solutions to their
respective linear Lyapunov equations (3.46) and (3.52). We define

r =
σmin(V∗GV)

2||Σnρ ||||Ĥ||
and G = H(2)(P1 ⊗ Q1)(H(2))∗ + C∗C.

Then it holds for the Lyapunov function F (x̂) = x̂∗Σ̂x̂ that

F (x̂) > 0 and d
dt
F (x̂) < 0, for all x̂ ∈ K0,r \ {0}, (A.5)

i.e., x̄ = 0 is an asymptotically stable equilibrium point.

A.3 Energy Functionals for Linear Balanced Truncation

In this section, we consider a stable system Σ =

(
A B

C

)
with A ∈ Rn×n, B ∈ Rn×m and

C ∈ Rp×n.

PropositionA.12 (Computation of Energy FunctionalswithfiniteGramians, [Ant05]).
Let the system Σ be reachable and observable and let the finite Gramians P(t),Q(t) be as de-
fined in 3.7 and 3.12, respectively. Also, let x =

∫ t
0 eA∗(t−τ)Bu dτ and v ∈ im(P(t)) (see

Theorem A.2). Then,
||u||2 = x∗P−1(t)x, (A.6)

where u(t) = −B∗eA∗(t−τ)v is the minimal input energy necessary to move the system to the
state x. Furthermore,

||y||2 = x∗0Q(t)x0 (A.7)
is the output energy generated by the initial state x0 at time t.
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From the definition of the Gramians, it is clear that

P(t2) > P(t1) and Q(t2) > Q(t1) for t2 > t1,

i.e., the finite Gramians grow larger in time [Ant05]. This also means, using them to
determine the energy functionals is time-dependent.

Remark A.13. The existence, or respectively finiteness, of the energy functionals in Def-
inition 3.17 is not always clear. If the system is not stable, Lo can be infinite. By conven-
tion, Lc(x0) is infinite if x0 cannot be reached from 0. We therefore assume that both
energy functionals are finite from now on [Sch93].

A.4 Energy Functionals for Quadratic Balanced Truncation

Wepresent theoremswhich are based on the relaxedDefinition 3.27 of the observability
energy functional.

Theorem A.14 (Computation of Energy Functionals of General Nonlinear Systems,
[BG17; GM96]). Consider the nonlinear version of system (3.1) with x̄ = 0 as an asymptoti-
cally stable equilibrium in two neighborhoodsKo andKc of 0. Assume the system is controllable
and observable, and Lo and Lc are smooth functions of x.

(1) For all x ∈ Kc, the controllability energy functional Lc(x) can be uniquely determined by
the partial differential equation

∂Lc

∂x
f (x) + f (x)

∂Lc

∂x
+

∂Lc

∂x
g(x)g∗(x)

∂∗Lc

∂x
= 0, Lo(0) = 0, (A.8)

under the assumption there exists a smooth solution L̄c on Kc and 0 is an asymptotically
stable equilibrium of −( f (x) + g(x)g∗(x) ∂∗Lc

∂x ) on Kc.

(2) Likewise, for all x ∈ Ko, the observability energy functional Lo(x) can be uniquely deter-
mined by the partial differential equation

∂Lo

∂x
f (x) +

1
2

h∗(x)h(x)− 1
2

µ−1 ∂Lo

∂x
g(x)g∗(x)

∂∗Lo

∂x
= 0, Lo(0) = −1

2
µ, (A.9)

under the assumption there exists a smooth solution L̄o onKo and 0 is an asymptotically sta-
ble equilibrium of f̄ (x) := ( f (x)− µ−1g(x)g∗(x) ∂∗Lo

∂x ) on Ko with ψ̇ = f̄ (ψ), ψ(0) = x

and µ := −||g∗(ψ) ∂∗ L̄o
∂x (ψ)||L2 ∈ R.

For the rest of this section, we look at the quadratic system Σ =

(
A H B

C

)
, with

matrices A ∈ Rn×n, H ∈ Rn×n2
, B ∈ Rn×m and C ∈ Rp×n.

With the next theorem, [BG17] contribute bounds on the energy functionals using
the quadratic form of the constructed infinite Gramians. They derive the bounds com-
puted with truncated Gramians in Theorem 3.28 from it.

91



CHAPTER A. More on Gramians, Stability and Energy Functionals for Balanced
Truncation

Theorem A.15 (Energy Functional Bounds with infinite Gramians, [BG17]).

(1) Let the system be controllable and A be stable. Furthermore, let the reachability Gramian
P > 0 uniquely satisfy the generalized Lyapunov equation (3.50). Also, using Theorem
A.14, let the controllability energy functional Lc(x) be the solution of

∂Lc

∂x
(Ax + H(x ⊗ x)) + (Ax + H(x ⊗ x))∗

∂∗Lc

∂x
+

∂Lc

∂x
BB∗ ∂∗Lc

∂x
= 0. (A.10)

Then, there is a neighborhood Kc of 0, such that for x ∈ Kc

Lc(x) >
1
2

x∗P−1x. (A.11)

(2) Let B ≡ 0 and x0 be an initial condition. Let the reachability Gramian P > 0 and the ob-
servability GramianQ > 0 uniquely satisfy their respective generalized Lyapunov equation
(3.50) or (3.56). Let Lo(x) be the observability energy functional as defined in Definition
3.27. Then, there is a neighborhood Ko of 0, such that for x ∈ Ko

Lo(x) 6
1
2

x∗Qx. (A.12)

It follows, that the proposed Gramians provide local estimates of the energy func-
tionals near the origin.

A strong assumption in Theorems A.15 and 3.28 is the positive definiteness of P .
Since this condition often cannot be guaranteed, [BG17] offer a direct connection of the
infinite and truncated Gramians to the reachability and observability of the system. In
consequence, this ties the proposed Gramians to the classical idea of balanced trunca-
tion.

TheoremA.16 (Reachability andObservabilitywith infiniteGramians, [BG17]). Con-
sider the system (3.37).

(1) Let the reachability Gramian P > 0 satisfy the generalized Lyapunov equation (3.50). Let
the system be driven from the zero state to x0. If x0 6∈ im(P), then Lc(x) = ∞ for all
inputs u.

(2) Let B ≡ 0 and x(0) = x0 be an initial condition. Let the reachability Gramian P > 0 and
the observability Gramian Q > 0 satisfy their respective generalized Lyapunov equation
(3.50) or (3.56). If x0 ∈ ker(Q), then the observability energy functional Lo(x0) = 0.

It follows from the first part of the theorem, that a state variable x0 which is not in
the image of P cannot be reached from 0. Conversely, all the states which lie in ker(P)

are uncontrollable. Likewise, the second part asserts that after the elimination of the
uncontrollable states (by assuming positive definiteness ofP), the states which are con-
tained in ker(Q) are unobservable. Accordingly, states that are in one of the Gramians’
kernels are judged unimportant regarding the system’s dynamics. This coupled with
the bounds given in Theorem A.15 correspond with the idea of linear balanced trunca-
tion of removing those states with low degrees of reachability and observability, again
measured by the SVs of the proposed Gramians.
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Corollary A.17 (Reachability and Observability with truncated Gramians, [BG17]).
Consider the system (3.37).

(1) Let the truncated reachability Gramian PT and the truncated observability Gramian QT

satisfy the respective Lyapunov equation (3.48) and (3.54). Let the system be driven from
the zero state to x0 6∈ im(PT ). Then, Lc(x) = ∞ for all inputs u.

(2) Let the quadratic system be locally controllable around 0, and assume that the pair (A, B)

is controllable. Then for B ≡ 0 and x(0) = x0, it holds that if x0 ∈ ker(QT ), then
Lo(x0) = 0.
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APPENDIX B

Multi-Linear Algebra Operations

B.1 The Kronecker Product

Let K be either R or C. For a more in depth treatment of the Kronecker product, see
[Pol14; ZD13].

Definition B.1 (Kronecker Product, [ZD13]). Let M = [mij] ∈ Kk×` and N ∈ Km×n be
matrices. The Kronecker product of M and N is the (km × `n) matrix:

M ⊗ N =
[
mijN

]

=


m1,1N m1,2N · · · m1,`N

m2,1N m2,2N · · · m2,`N
...

... . . . ...
mk,1N mk,2N · · · mk,`N

 .

Theorem B.2 (Kronecker Product Properties, [ZD13]). Let M ∈ Kk×`, K ∈ K`×p and
N ∈ Km×n, L ∈ Kn×r be matrices, and µ a scalar. The following properties hold for the
Kronecker product:

(1) In general, noncommutativity:

M ⊗ N 6= N ⊗ M.

(2) Linearity in both terms:

M ⊗ (µN) = µ(M ⊗ N) = (µM)⊗ N.

(3) Distributivity and associativity:

(M + N)⊗ K = (M ⊗ K) + (N ⊗ K),

M ⊗ (N + K) = (M ⊗ N) + (M ⊗ K),

(M ⊗ N)⊗ K = M ⊗ (N ⊗ K).

(4) Distributivity of (conjugate) transposition:

(M ⊗ N)∗ = M∗ ⊗ N∗.
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(5) Mixed product with appropriately sized arbitrary matrices:

(M ⊗ N)(K ⊗ L) = MK ⊗ NL.

(6) Mixed product with appropriately sized identity matrix:

(M ⊗ N) = (M ⊗ Im)(I` ⊗ N) = (Ik ⊗ N)(M ⊗ In).

Observe that (M⊗ In)(I`⊗ N) commutes for square matrices M ∈ K`×` and N ∈ Kn×n.

B.2 Tensor Unfolding

For the computation of the observability Gramian as inDefinition 3.33, and by extension
its Volterra kernels as in Definition 3.32, the Lyapunov equations in (3.53), (3.54) and in
Theorem 3.34 must be solved. This requires the matrixH(2). We introduced this matrix
as the mode-2 unfolding of a tensor created from H in the Section 3.3. Now, we give
the mathematical construction of this matrix. Since we only provide a brief, informal
treatment of tensor theory and restrict ourselves to the necessities of our case, we refer
to [KB09] for a detailed overview on the subject.

A tensor is an array of multiple dimensions. Their number determines its order or
mode. So far in this thesis, we have encountered 1- and 2-order tensors, i.e., vectors and
matrices [KB09]. To construct H(2), we must briefly enter the 3rd dimension. To that
end, let us specifically consider the 3rd-order tensor H with elements ηijk. To get a one-
dimensional fiber of H, we fix every index but one. Accordingly, H has three different
kinds of fibers: the mode-1 fibers η:jk (the columns), the mode-2 fiber ηi:k (the rows),
and the mode-3 fibers ηij: (the tubes). Tensor slices are two-dimensional, obtained by
fixing every index but two. That leaves only one free index for H with which we can
access its horizontal (Hi::), lateral (H:j:) and frontal (H::k) slices. The mode-m unfolding
of a tensor repositions its mode-m fibers to become the columns of a matrix [KB09]. It
is denoted by H(m). For example, let H ∈ R4×3×2 with slices

H::1 =


η1,1,1 η1,2,1 η1,3,1

η2,1,1 η2,2,1 η2,3,1

η3,1,1 η3,2,1 η3,3,1

η4,1,1 η4,2,1 η4,3,1

 , H::2 =


η1,1,2 η1,2,2 η1,3,2

η2,1,2 η2,2,2 η2,3,2

η3,1,2 η3,2,2 η3,3,2

η4,1,2 η4,2,2 η4,3,2

 ,

then we have the following mode-m unfoldings:

H(1) =


η1,1,1 η1,2,1 η1,3,1 η1,1,2 η1,2,2 η1,3,2

η2,1,1 η2,2,1 η2,3,1 η2,1,2 η2,2,2 η2,3,2

η3,1,1 η3,2,1 η3,3,1 η3,1,2 η3,2,2 η3,3,2

η4,1,1 η4,2,1 η4,3,1 η4,1,2 η4,2,2 η4,3,2

 ,
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H(2) =


η1,1,1 η2,1,1 η3,1,1 η4,1,1 η1,1,2 η2,1,2 η3,1,2 η4,1,2

η1,2,1 η2,2,1 η3,2,1 η4,2,1 η1,2,2 η2,2,2 η3,2,2 η4,2,2

η1,3,1 η2,3,1 η3,3,1 η4,3,1 η1,3,2 η2,3,2 η3,3,2 η4,3,2

 ,

and

H(3) =

[
η1,1,1 η2,1,1 η3,1,1 η4,1,1 η1,2,1 η2,2,1 η3,2,1 η4,2,1 η1,3,1 η2,3,1 η3,3,1 η4,3,1

η1,1,2 η2,1,2 η3,1,2 η4,1,2 η1,2,2 η2,2,2 η3,2,2 η4,2,2 η1,3,2 η2,3,2 η3,3,2 η4,3,2

]
.

Matrix H in system (3.37) is a Hessian of size (n2 × n). It can be interpreted as the
mode-1 unfolding of the 3rd-order tensor H of size (n × n × n) [BG17], i.e., H = H(1).
The matrix H(2) is the mode-2 unfolding of H. In practice, the tensor H is not formed
in order to construct its mode-2 unfolding. Instead, H(2) is composed by rearranging
and concatenating the columns of H (orH(1) respectively), into rows as implied by the
example above.

[BG17] derive H(2) in the process of determining of the observability Gramian Q.
They take advantage of the duality principle between reachable and observable sub-
space, similar to the linear case in Appendix A.1, to acquire the dual quadratic-bilinear
ODE system to system (3.37) (including the bilinear term). Then, they exploit prop-
erties of the tensor product and unfolding to simplify the quadratic term in the dual
system. This leads them to the creation of H(2).

Figure B.1 shows sparsity pattern of H(2).

0 20 40 60 80 100 120 140

0
2
4
6
8

10
12

number of nonzero elements: 30

Figure B.1: Sparsity Pattern of H(2) (EN model, 3-generator/9-nodes system, nco = 3)
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APPENDIX C

Notes on Codes

Codes & Data

At the moment, this section is yet incomplete. In the printed version of the thesis, you will also
find the readme document from the git repository. It includes a guide and instructions of how
to handle the files, and a table listing the script which generated the data and the script which
created the plot for each figure in Chapter 5.

Under the following link, you can find the code used for the numerical experiments
inChapter 5. This encompasses the scripts to generate the data for case57, the data them-
selves, and the main and auxiliary functions to .

https://gitlab.mpi-magdeburg.mpg.de/grundel/Strommodelle/tree/master

Remarks on Algorithms&Algorithm to Compute the Truncated
Observability Gramian

In our description of the algorithms in Sections 3.3 and 3.4, and Appendix C, we use
the MATLAB functions [V, Σ, W] = svd(M), and R = chol(M), or [R, flag] = chol(M),
respectively.

It is imperative to mention that the function chol is very sensitive concerning the
positive definiteness of M. If the EVs are too close to zero, MATLAB will not compute
the Cholesky decomposition and return with an error. As this happened very often
during the computations, we employ the following strategy whenever we have to find
the Cholesky factor of a matrix:

1. We run [R, flag] = chol(M).

2. If flag equals zero, the algorithm just continues with the next major step.

3. If flag does not equal zero, we apply the auxiliary function makeSPD(.) to M in
order to find a positive definite matrix M̃ that is close to M.

This function is adapted from [Mar12] and based on the iterative spectral method.
[Mar12] tested different algorithms with the aim to approximate a nonpositive
definitematrixwith a positive definite one. We choose the iterative spectralmethod,
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because it was deemed almost as good as the most accurate algorithm (in the
Frobenius norm), but is considerably faster. We changed one significant aspect
of the algorithm, though. Instead of basing the decision if a matrix is positive
definite on the eigenvalues of the matrix, we instead run the chol function and
evaluated the flag value in each iteration. This resulted in a much more reliable
performance.

4. Finally, we run R = chol(M̃) and the algorithm continues the next step with the
Cholesky factor of this approximate matrix.
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Algorithm C.1: Iterative Scheme to Compute Truncated Gramian QT
Input: quadratic system matrices A, H, C, Volterra kernels P1, . . . , Pν, shift

α > 0, number of Volterra kernels ν

Output: Cholesky factor S (upper triangular matrix) of the truncated
observability Gramian QT .

1 Compute the matrix H(2).
2 for j = 1 : 4nco : 16n2

co do
3 H(2)(:, j : j + 4nco − 1) := H(:, j : j + 4nco − 1).
4 end for
5 Shift matrix A with α to make the matrix stable: Aα := A − αI.
6 Determine Cholesky factor S1 of first Volterra kernel Q1 by calling Algorithm

3.1 with A := Aα, B := C and compute Q1 := S∗
1S1.

7 Set second Volterra kernel Q2 := 0.
8 Compute Cholesky factors S3, . . . , Sν to determine Volterra kernels Q3, . . . Qν:
9 for i = 3 : ν do
10 Qkron

i := 0 j := i − 2;
11 Sum up Kronecker products of previously computed Pk and Qj.
12 for k = 1 : i − 2 do
13 Qkron

i := Qkron
i + Pk ⊗ Qj;

14 j := j − 1;
15 end for
16 Set Hkron

i := H(2)Qkron
i (H(2))∗.

17 Compute Cholesky factor Bi of Hkron
i .

18 Update Cholesky factor Si by calling Algorithm 3.1 with
19 A := Aα, B := Bi.
20 Compute Volterra kernel Qi := S∗

i Si.
21 end for
22 Determine QT by summing up Volterra kernels:
23 QT = 0;
24 for i = 1 : ν do
25 QT = QT + Qi.
26 end for
27 Compute Cholesky factor S of QT .
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