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Present Situation
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Uncontrolled Aggregated Power Demand:
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Data provided by an Australian electricity network.
Problem: Fluctuations of the power demand
Idea: Exploit flexibilities: storage devices

Residential Energy Systems (RESs) [4], [5]

Given: Z € N Residential Energy Systems (RESs)
System equation of RES j € [1:Z] = {1,...,Z} at time k € N:

xi(k +1) = aixi(k) + T(Biu" (k) + ui (k))
zi(k) = wi(k) + ui' (k) + iu; (k)
Constraints: For all i € [1: 7] and all kK € Ny

0 S X,'(k) S C,‘

u < u (k) <0

0 < Ul—i_(k < U )
0 < 4l ut) < ’

Notation
e State of charge x;(k) > 0 of the battery
e Power demand zj(k) € R
e Net consumption w;(k) = ¢;(k) — gi(k) € R (load minus generation)
e Charging rate u;"(k) > 0 and discharging rate u- (k) <0
e Sampling interval length T > 0
o

Losses «;, 5;,v; € (0,1] due to energy transformation

Problem Formulation

Objective: Minimize the deviation from the overall average net consumption
.z
== Gk
i=1

Ci(k) = k%qZﬁ:o w;(n) if k <N —1,
| %Zﬁ:k—NH wi(n) ifk>N-—1.

where

Opimization Problem (finite time horizon N € N-,)
k+N—1 N\
quNZ(Z M)

s.t. system dynamics and constraints

ADMM Formulation
k+N 1

e Z
S.t. system dynamics and constraints
zi(n) —ai(n)=0 Vnelk:k+N-—1]

(n)” = —Ha — I3

(OCP)

Model Predictive Control (MPC)

Basic ldea:
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Input: Time horizon N € N, number of systems Z € N, net consumption w;(n), i € [1: Z],

nelk:k+N-—1]

Initialization: Set k = 0.

Main loop: For k € N

(1) For all i € [1: Z], measure the current states X; := x;(k).

(2) Solve (OCP) to obtain minimizing sequences
ur = (u(k),...,u(k+N—-1))"

/

Viell:Z].

(3) For all i € [1:Z], implement u;(k, X;) := u?(k), shift the horizon forward in time, i.e. set

k =k+1, and go to Step (1).

Alternating Direction Method of Multipliers (ADMM) [1]

Input: Step size p > 0, Z € N, max. number /.., of iterations.
Initialization: Set / = 0 and choose \°, a’ € RN (arbitrarily)
Loop: While ¢ < /.

1. Solve (in parallel)

zi™ cargmin z A+ —Hz,- — at||;

Z

for each RES i € [1 : Z] and broadcast z:™ to the CE.
2. The CE solves

be arg min ||a — CHQ ZaT)‘g _Hzgﬂ a.||2
=1
3. The CE updates the Lagrange multipliers

M =X p(zt—al™) viedl,..., 7}

and broadcasts (A", at™) to RES i € [1: Z]. Set £ = £ + 1.

Numerical Results
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Observations
e Significant peak shaving of the overall performance

e Deviations from the desired reference value due to battery capacities and (dis)charging rates

Controllable Loads [2]

The net consumption is split into a static and a controllable part
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Additional Constraints
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for some constants w¢ > 0 and N € N.

System Dynamics
X,'(k + 1)
zi( k)

~+ Additional optimization variable u¢

aixi(k) + T(Bju; (k) + u; (k)
+ u; (k) + yiu; (k)

Observations
Further improvement of the overall performance
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Outlook

e Coupled microgrids [4]
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First numerical simulations show potential, but no convergence analysis so far.
Surrogate models, e.g. to speed up the computation of single micro grids

o

e Uncertainties, e.g. time series analysis to identify outliners

e Multi-objective optimization: Peak shaving vs. tube constraints
o

Price-based control [3]
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