

Technische Universität Chemnitz Fakultät für Elektrotechnik und Informationstechnik Professur Regelungstechnik und Systemdynamik Prof. Dr.-Ing. habil. Stefan Streif

Transient Stability Analysis of Power Grids with Admissible & Maximal Robust Positively Invariant Sets

Willem Esterhuizen Tim Aschenbruck Stefan Streif

Admissible sets and MRPIs: setting

Consider:

 $\begin{aligned} \dot{x}(t) &= f(x(t), d(t)), \\ x(t_0) &= x_0, \\ d &\in \mathcal{D}, \\ g_i(x(t)) &\leq 0, \forall t \in [0, \infty[, i = 1, 2, ..., p. \end{aligned}$

Assumptions

- (A1) The space \mathcal{D} is the set of all Lebesgue measurable functions that map the interval $[t_0, \infty)$ to a set $D \subset \mathbb{R}^m$, which is compact and convex.
- (A2) The function f is C^2 with respect to $d \in D$, and for every d in an open subset containing D, the function f is C^2 with respect to $x \in \mathbb{R}^n$.
- (A3) There exists a constant $0 < c < +\infty$ such that the following inequality holds true:

$$\sup_{d \in D} |x^T f(x, d)| \le c(1 + ||x||^2), \text{ for all } x \in \mathbb{R}^n.$$

- (A4) The set $f(x, D) \triangleq \{f(x, d) : d \in D\}$ is convex for all $x \in \mathbb{R}^n$.
- (A5) For every i = 1, 2, ..., p, the function g_i is C^2 with respect to $x \in \mathbb{R}^n$.

Most assumptions needed to have compactness of space of solutions.

Admissible sets and MRPIs

AC SD

Definition: The *admissible set* (viability kernel) of the system is the set of initial states for which there exists an input $d \in D$ such that the corresponding integral curve satisfies the constraints for all future time.

 $\mathcal{A} \triangleq \{ x_0 \in \mathbb{R}^n : \exists d \in \mathcal{D}, g_i(x^{(d,x_0,t_0)}(t)) \leq 0, \forall i, \forall t \in [t_0,\infty[]\}.$

Definition: A set $\Omega \subset \mathbb{R}^n$ is said to be a *robust positively invariant set* (RPI) of the system provided that $x^{(d,x_0,t_0)}(t) \in \Omega$ for all $t \in [t_0, \infty[$, for all $x_0 \in \Omega$ and for all $d \in \mathcal{D}$.

Let $G \triangleq \{x : g_i(x) \le 0 \forall i\}$

Definition: The *maximal robust positively invariant set* (MRPI) of the system contained in *G*, is the union of all RPIs that are subsets of *G*. Equivalently,

$$\mathcal{M} \triangleq \{ x_0 \in \mathbb{R}^n : g_i(x^{(d,x_0,t_0)}(t)) \leq 0, \forall i, \forall d \in \mathcal{D}, \forall t \in [t_0,\infty[]\}.$$

[De Dona and Levine: On barriers in state and input constrained nonlinear systems, SIAM Journal on Contr. & Opt., 2013] [Esterhuizen, Aschenbruck, Streif: On Maximal Robust Positively Invariant Sets in Constrained Nonlinear Systems, under review]

Willem Esterhuizen

Closed-ness and Semi-permeability

Proposition

Under assumptions (A1) – (A5) the sets \mathcal{A} and \mathcal{M} are closed.

This follows from the compactness result

Let: $G_{-} \triangleq \{x : g_{i}(x) < 0 \forall i\}, [\partial A]_{-} \triangleq \partial A \cap G_{-}, [\partial M]_{-} \triangleq \partial M \cap G_{-}$

- These are special parts of the sets' boundaries called the *barriers*.
- Possess the *semi-permeability* property.

- Terms introduced by Isaacs in differential games.
- Barriers may be constructed via the Maximum Principle.

Stationarity

General

- Consider the set $\mathcal{M}_T \triangleq \{x_0 \in \mathbb{R}^n : x^{(d,x_0,t_0)}(t) \in G \ \forall t \in [t_0,T], \forall d \in \mathcal{D}\}$
- Clearly, $\mathcal{M} \subset \mathcal{M}_T$ and \mathcal{M}_T is an RPI if and only if $\mathcal{M}_T \subset \mathcal{M}$

Definition

The set \mathcal{M} is said to be stationary with horizon $\mathcal{T} < \infty$ provided that:

 $\mathcal{M} = \mathcal{M}_{\mathcal{T}}$

Example

the set \mathcal{M} for $\dot{x} = -x + d$, $|x| \le 2$, $|d| \le 1$ is not stationary.

Stationarity of \mathcal{A}

• Similar definition for the set \mathcal{A} .

➡ Stationarity guarantees that barriers intersect $G_0 \triangleq \partial G$ in finite time.
 ➡ We can now state our main theorem

Willem Esterhuizen

Main Theorem

Theorem:

Consider a point $\bar{x} \in [\partial \mathcal{M}]_{-}$ (resp. $\bar{x} \in [\partial \mathcal{A}]_{-}$), assume that (A1)-(A5) hold and that the set \mathcal{M} (resp. \mathcal{A}) is stationary with horizon $T < \infty$. Then there exists a $\bar{d} \in \mathcal{D}$ such that the corresponding integral curve runs along $[\partial \mathcal{M}]_{-}$ (resp. $[\partial \mathcal{A}]_{-}$) and intersects G_0 in finite time.

In other words, there exists a $\overline{d} \in \mathcal{D}$ and $\overline{t} \in [0, T]$ such that $x^{(\overline{d}, \overline{x}, t_0)}(t) \in [\partial \mathcal{M}]_-$ (resp. $x^{(\overline{d}, \overline{x}, t_0)}(t) \in [\partial \mathcal{A}]_-$) for all $t \in [t_0, \overline{t}[$, and $x^{(\overline{d}, \overline{x}, t_0)}(\overline{t}) \in G_0$. Moreover, this integral curve and the corresponding disturbance realization, $\overline{d} \in \mathcal{D}$, satisfy the following necessary conditions:

There exists a nonzero absolutely continuous maximal solution λ^d to the adjoint equation:

$$\begin{split} \dot{\lambda}^{\bar{d}}(t) &= -\left(\frac{\partial f}{\partial x}(x^{(\bar{d})}(t), \bar{d}(t))\right)' \lambda^{\bar{d}}(t), \\ \lambda^{\bar{d}}(\bar{t}) &= (Dg_{i^*}(z))^T, \end{split}$$

where, $z \triangleq x^{(\bar{d}, \bar{x}, t_0)}(\bar{t}) \in G_0$, such that...

Main Theorem (continued...)

$$\max_{d \in D} \{\lambda^{\bar{d}}(t)^{T} f(x^{(\bar{d})}(t), d)\} = \lambda^{\bar{d}}(t)^{T} f(x^{(\bar{d})}(t), \bar{d}(t)) = 0$$

$$(\text{resp.} \min_{d \in D} \{\lambda^{\bar{d}}(t)^{T} f(x^{(\bar{d})}(t), d)\} = \lambda^{\bar{d}}(t)^{T} f(x^{(\bar{d})}(t), \bar{d}(t)) = 0)$$
for almost all $t \in [t_{0}, \bar{t}]$. Moreover, at time \bar{t} the ultimate tangentiality condition holds:
$$\max_{d \in D} \max_{i \in \mathbb{I}(z)} L_{f} g_{i}(z, d) = \max_{i \in \mathbb{I}(z)} L_{f} g_{i}(z, \bar{d}(\bar{t})) = L_{f} g_{i^{*}}(z, \bar{d}(\bar{t})) = 0$$

$$(\text{resp.} \min_{d \in D} \max_{i \in \mathbb{I}(z)} L_{f} g_{i}(z, d) = \max_{i \in \mathbb{I}(z)} L_{f} g_{i}(z, \bar{d}(\bar{t})) = L_{f} g_{i^{*}}(z, \bar{d}(\bar{t})) = 0).$$

Theorem (Maximum Principle)

Let $d \in D$ be a disturbance realization such that $x^{(d,x_0,t_0)}(t_1) \in \partial R_{t_1}(x_0)$ for some $t_1 > t_0$. Then, there exists a non-zero absolutely continuous maximal solution to the adjoint such that

$$\max_{d \in D} \{\lambda^{\bar{d}}(t)^T f(x^{(\bar{d})}(t), d)\} = \lambda^{\bar{d}}(t)^T f(x^{(\bar{d})}(t), \bar{d}(t)) = \text{constant}$$

for almost every $t \in [t_0, t_1]$.

[Lee and Markus, Foundations of Optimal Control Theory, 1967]

Some interpretation

Willem Esterhuizen

Some examples: Admissible sets

[Esterhuizen and Lévine: A preliminary study of barrier stopping points in constrained nonlinear systems, in Proceedings of the 19th IFAC World Congress, 2014]

[Esterhuizen and Lévine: Barriers and potentially safe sets in hybrid systems: Pendulum with non-rigid cable, Automatica, 2016]

Willem Esterhuizen

Some examples: MRPIs

[Esterhuizen, Aschenbruck, Streif: On Maximal Robust Positively Invariant Sets in Constrained Nonlinear Systems, under review]

Willem Esterhuizen

The Transient Stability Problem

Problem Setting

- Grid is operating in a "stable" way: rotor velocities & phase angles at all busses within acceptable bounds.
- A contingency occurs.
- Will the rotor velocities and phase angles remain in their bounds?
- Will the system evolve to a "stable" operating point?

Assumptions

- Mechanical input torque to synchronous machines is constant.
- Power demand at loads is constant.

Willem Esterhuizen

Transient Stability Analysis & Control System (TSA&C)

AC SD

Typical system:

- 1. Have model & list of contingencies (10 000 +)
- Screen find those most likely to cause instability (≈ 1000)
- 3. Simulate all of them
- 4. Find the most critical ones
- 5. Do this periodically (roughly every hour)

Our contribution:

• We propose a new "set-based" approach to Dynamic Contingency Screening (DCS)

[Chiang, Tong, Tada: On-line transient stability screening of 14,000-bus models using TEPCO-BCU:Evaluations and methods, IEEE PES General Meeting, 2010]

Current DCS Approaches

 $\mathcal{R}(0)$

0.1

[Turitsyn et al.: Lyapunov Functions Family Approach to Transient Stability Assessment, IEEE Transactions on Power Systems, 2016] [Althoff et al.: Compositional transient stability analysis of power systems via the computation of reachable sets, ACC, 2017] [Jin et al.: Reachability analysis based transient stability design in power systems, International Journal of Electrical Power & Energy Systems, 2010]

Willem Esterhuizen

Modelling the power grid

Structure-preserving model

- An undirected graph
- Nodes represent generator/load buses
- Edges represent transmission lines
- Lines are lossless (i.e. zero conductance)
- Gen's modelled by the "swing equation"
- Loads are modelled by a first-order ODE.

$$m_k \ddot{\delta}_k + d_k \dot{\delta}_k + \sum_{j \in \mathcal{N}_k} a_{kj} \sin(\delta_k - \delta_j) = P_{m_k}, \quad k \in \mathcal{G}$$
$$d_k \dot{\delta}_k + \sum_{j \in \mathcal{N}_k} a_{kj} \sin(\delta_k - \delta_j) = -P_{d_k}, \quad k \in \mathcal{L}$$

Analysis with the sets

Idea

- Consider each generator individually
- Impose state constraints
- These form "safe sets"

- Treat its neighbours' δ 's as inputs
- Find the node's \mathcal{M} and \mathcal{A}

Examples: single machine, single load

Fig. 3. The admissible sets and MRPIs for the two bus system with different disturbance bounds $\overline{\delta}_2$.

[Aschenbruck, Esterhuizen, Streif: Transient stability analysis of power grids with admissible and maximal robust positively invariant sets, not yet submitted]

Willem Esterhuizen

Examples: double machine, infinite bus

Fig. 5. The admissible sets and MRPIs for machine one of the double machine infinite bus system with different disturbance bounds $\overline{\delta}_2$.

[Aschenbruck, Esterhuizen, Streif: Transient stability analysis of power grids with admissible and maximal robust positively invariant sets, not yet submitted]

Willem Esterhuizen

Examples: double machine, infinite bus

[Aschenbruck, Esterhuizen, Streif: Transient stability analysis of power grids with admissible and maximal robust positively invariant sets, not yet submitted]

Willem Esterhuizen

To explore: reduced-order models

